Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali Rendiconti

Fred Gross, Chung-Chun Yang

On the growth of the meromorphic solutions of certain functional-differential equations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 53 (1972), n.1-2, p. 50-55.
Accademia Nazionale dei Lincei

http://www.bdim.eu/item?id=RLINA_1972_8_53_1-2_50_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Analisi funzionale. - On the growth of the meromorphic solutions of certain functional-differential equations ${ }^{(*)}$. Nota ${ }^{(* *)}$ di Fred Gross e Chung-Chun Yang, presentata dal Socio G. Sansone.

RiAsSunto. - Si considera l'accrescimento di una funzione meromorfa, soluzione dell'equazione

$$
\mathrm{P}\left(u\left(\lambda_{1} z\right), u\left(\lambda_{2} z\right), \cdots, u\left(\lambda_{l} z\right)\right)=h\left(u^{(m)}(z)\right)
$$

dove m è un intiero ≥ 0.
$\mathrm{P}\left(w_{1}(z), \cdots, w_{l}(z)\right)$ è un polinomio delle funzioni $w_{1}(z), \cdots, w_{l}(z)$ e delle loro dérivate avente come coefficienti polinomi in z, h è una data funzione meromorfa d'ordine zero e λ_{i}, $i=1,2, \cdots, l$ sono costanti in valore assoluto $>\mathrm{I}$.

Let $g(z)$ denote a non-constant meromorphic function. Then, as usual, the Nevanlinna characteristic function $\mathrm{T}(r, g)$ is used to measure the growth rate of g and which has many properties in analogy with the logarithm of the maximum modulus function of an entire function. In particular, $\mathrm{T}(r, g)$ is a real-valued, continuous non-decreasing and unbounded function defined for $r>r_{0}>0$. The order ρ_{g} and lower order μ_{g} of g are defined as

$$
\rho_{g}=\varlimsup_{r \rightarrow \infty} \frac{\log \mathrm{~T}(r, g)}{\log r} \quad \text { and } \quad \mu_{g}={\underset{r i m}{\rightarrow \infty}}_{\log \mathrm{T}(r, g)}^{\log r}
$$

In this paper we are primarily interested in the investigation of the growth rate of the meromorphic functions $u(z)$ which are solutions of the equation of the form:

$$
\begin{equation*}
\mathrm{P}\left(u\left(\lambda_{1} z\right), u\left(\lambda_{2} z\right), \cdots, u\left(\lambda_{l} z\right)\right)=h\left(u^{(m)}(z)\right), \tag{I}
\end{equation*}
$$

where $\mathrm{P}\left(w_{1}(z), w_{2}(z), \cdots, w_{l}(z)\right)$ denotes a polynomial in l functions $w_{1}(z), \cdots, w_{l}(z)$ and their derivatives with polynomials in z as the coefficients, h is a given meromorphic function, $m=0$ or any positive integer $\left(u^{(0)}(z) \equiv u(z)\right)$, and λ_{i} are constants with $\left|\lambda_{i}\right|>\mathrm{I}$.

Our study of the above equation is motivated by the following equation which is a special case of equation (I)

$$
\begin{equation*}
u(\lambda z)=h(u(z)) . \tag{2}
\end{equation*}
$$

Equation (2) is called Poincaré equation and has been investigated by many authors. We here refer the reader to a book of Kuczma's [8, p. 141] for references.
(*) The content is based on a talk delivered by the second author at the Conference on Ordinary Differential Equations at Oberwolfach, Federal Republic of Germany, March 23, 1972.
(**) Pervenuta all'Accademia il 3 luglio 1972.

Before proceeding further we would like to point out that for certain functions h, there exist solutions to equation (2). For example, when $h(z)=e^{z}$, a solution $u(z)$ can be exhibited for appropriate constants c. Baker [I] showed that for a constant c with $|c|>\mathrm{I}$, there exists an entire function f satisfying the equation:

$$
f(c z)=\exp f(z) .
$$

With $\lambda=c, u=f$ is a solution of (2). It is pointed out [I] that the growth of $f(z)$ is faster than that of any $\exp _{n}(z)$ (the n-th iterate of $\exp (z)$).

As a second example let $h(z)=z^{2}, \lambda=2$. In this case $u(z)=e^{z}$ is a solution of equation (2).

It is easily seen, by virtue of a result of Edrei and Fuchs [6] that when h is a meromorphic function of positive order then every transcendental entire solution of equation (2) has infinite order. Therefore we shall only treat the case when the given meromorphic function h is of zero order.

In the sequel, we shall show that when h is transcendental, then any entire solution $u(z)$ of equation (2) is of infinite lower order. We shall also derive a more precise estimate for the growth of a meromorphic solution $u(z)$ when h is a rational function. Actually, we have

THEOREM I. Let $h(z)$ be a given non-rational meromorphic function of zero order. Then any entire function $u(z)$ which satisfies equation (I), has lower order equal to infinity.

Theorem 2. Let $h(z)$ be a rational function of weight $n(n \geq 2)$. Suppose that $u(z)$ is a meromorphic function of order $\rho(0 \leq \rho \leq+\infty)$ which satisfies equation (2) with $|\lambda|>1$. Then p must be finite and equal to $\log n|\log | \lambda \mid$. Moreover, u is of regular growth i.e. the lower order of $u(z)$ is equal to the order of $u(z)$.

Remark. Theorem 2 is an extension of a special case of a result of Valiron [9, p. 46].

2. Preliminary Lemmas

Our theorems will readily follow from the following four Lemmas.
Lemma i. Let g be transcendental entire function. Then

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\mathrm{~T}(r, f(g))}{\mathrm{T}(r, g)}=\infty \tag{i}
\end{equation*}
$$

for any transcendental meromorphic function f (see e.g. [2]);

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\mathrm{~T}(r, \mathrm{R}(g))}{\mathrm{T}(r, g)}=n \tag{ii}
\end{equation*}
$$

for any rational function $\mathrm{R}(z)$ of weight n (see e.g. [7]).

Lemma 2 will involve the notion of Polya peaks which we introduce first. Let $\mathrm{G}(t)$ be a real valued, non-negative and unbounded function defined for $t \geq t_{0}>0$, and define the order and lower order of G respectively by

$$
\rho=\varlimsup_{t \rightarrow \infty} \frac{\log \mathrm{G}(t)}{\log t} \quad, \quad \mu=\lim _{t \rightarrow \infty} \frac{\log \mathrm{G}(t)}{\log t} .
$$

Definition [3, 4, 5]. An increasing positive sequence $r_{1}, r_{2}, \cdots, r_{m}, \ldots$ is said to be a sequence of Polya peaks of order η for $G(t)(0 \leq \eta<\infty)$ if it is possible to find a pair of associated sequences $\left\{a_{m}\right\}_{m=1}^{\infty},\left\{\mathrm{A}_{m}\right\}_{m=1}^{\infty}$ such that

$$
\lim _{m \rightarrow \infty} a_{m}=\lim _{m \rightarrow \infty} \mathrm{~A}_{m} / r_{m}=+\infty \quad ; \quad \lim _{m \rightarrow \infty} r_{m} / a_{m}=\infty
$$

and such that

$$
\mathrm{G}(t) \leq(\mathrm{I}+\mathrm{o}(\mathrm{I}))\left(t / r_{m}\right)^{n} \mathrm{G}\left(r_{m}\right)\left(m \rightarrow \infty, a_{m} \leq t \leq \mathrm{A}_{m}\right)
$$

Lemma 2. (Existence theorem for Polya peaks [4, 5]). Let $\mathrm{G}(t)$ be a real valued non-negative non-decreasing and unbounded function definea for $t \geq t_{0}>0$, having finite lower order μ. Then for each finite η satisfying $\mu \leq \eta \leq \rho$ there exists a sequence $\left\{r_{m}\right\}$ of Polya peaks, order η, of $\mathrm{G}(t)$.

Lemma 3. Let f be a non-constant meromorphic function. Suppose that there exists a constant $\alpha>$ I such that the following estimate holds:

$$
\begin{equation*}
\frac{\lim }{r \rightarrow \infty} \frac{\mathrm{~T}(\alpha r, f)}{\mathrm{T}(r, f)}=\infty \tag{3}
\end{equation*}
$$

Then the lower order of f must be infinite.
Proof. Suppose that $\mu_{f}<\infty$. Then there exists a sequence $\left\{r_{m}\right\}$ of Polya peaks of order μ_{f} for $\mathrm{T}(r, f)$.

Hence, we would have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\mathrm{~T}\left(\alpha r_{m}, f\right)}{\mathrm{T}\left(r_{m}, f\right)} \leq(\mathrm{I}+\mathrm{o}(\mathrm{I})) \alpha^{\mu} f<+\infty \tag{4}
\end{equation*}
$$

This contradicts assumption (3), and Lemma 3 is thus proved.
Lemma 4 [ro, p. 25]. Let f be a non-constant meromorphic function and β be any constant $>\mathrm{I}$. Then for $r>r_{0}$

$$
\begin{equation*}
\mathrm{T}\left(r, f^{\prime}\right)<\mathrm{K}_{1} \mathrm{~T}(\beta r, f) \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T}(r, f)<\mathrm{K}_{2} \mathrm{~T}\left(\beta r, f^{\prime}\right) \tag{b}
\end{equation*}
$$

where K_{1} and K_{2} are two positive constants.

3. Proof of Theorem i.

We assume that $m=0$. Suppose that u is a transcendental entire function satisfying equation (I). Then according to inequality (a) of Lemma 4, it is easy to show that there exist positive constants K and $\alpha>\mathrm{I}$ such that

$$
\begin{equation*}
\mathrm{T}\left(r, \mathrm{P}\left(u(\lambda z), \cdots, u\left(\lambda_{l} z\right)\right)\right) \leq \mathrm{KT}(\alpha r, u) \tag{5}
\end{equation*}
$$

for sufficiently large r.
From this and equation (I) we have

$$
\begin{equation*}
\mathrm{KT}(\alpha r, u) \geq \mathrm{T}(r, h(u)) . \tag{6}
\end{equation*}
$$

Hence, by Lemma I part (i)

$$
\begin{equation*}
{\left.\underset{r x}{ } \lim _{r \rightarrow \infty} \frac{\mathrm{~T}(\alpha r, u)}{\mathrm{T}(r, u)} \geq \frac{\mathrm{I}}{\mathrm{~K}} \underset{r \rightarrow \infty}{\lim } \frac{\mathrm{~T}(r, h(u))}{\mathrm{T}(r, u)}=\infty\right) .}^{2} \tag{7}
\end{equation*}
$$

our assertion follows from this and Lemma 3.
The proof for the case $m>0$ is similar and will be omitted.
Proof of Theorem 2. Suppose that u is a transcendental meromorphic function satisfying equation (2) with h being a rational function of weight $n(n \geq 2)$. Then giving $\varepsilon>0$ according to assertion (ii) of Lemma I we have (for $r>r_{0} \geq$ I)

$$
\begin{equation*}
\mathrm{T}(|\lambda| r, u)=\mathrm{T}(\dot{r}, h(u)) \leq n(\mathrm{I}+\varepsilon) \mathrm{T}(r, u) \tag{8}
\end{equation*}
$$

Thus
(9)

$$
\mathrm{T}\left(|\lambda|^{m} r, u\right) \leq n^{m}(\mathrm{I}+\varepsilon)^{m} \mathrm{~T}(r, u) .
$$

Now fix $r \geq r_{0} \geq 1$. Then

$$
\begin{equation*}
\mathrm{T}\left(|\lambda|^{m} r_{0}, u\right) \leq n^{m}(\mathrm{I}+\varepsilon)^{m} \mathrm{~T}\left(r_{0}, u\right) . \tag{io}
\end{equation*}
$$

Assume now that the order of $u\left(=\rho_{u}\right)=p$. Then there exists a sequence $\left\{r_{n}\right\}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log \mathrm{~T}\left(r_{n}, u\right)}{\log r_{n}}=\rho . \tag{II}
\end{equation*}
$$

On the other hand if we choose for $i=1,2 \cdots$

$$
\begin{equation*}
m_{i}=\frac{\log r_{i}}{\log |\lambda|}+\mathrm{I} \tag{I2}
\end{equation*}
$$

(where $[x]=$ greatest integer not exceeding x), then

$$
\begin{equation*}
|\lambda|^{m_{i}} r_{0}>r_{i} . \tag{13}
\end{equation*}
$$

It follows from inequalities (I3), (IO), equality (I2), and the fact that $\mathrm{T}(r, u)$ is an increasing function of r, that

$$
\begin{align*}
\rho=\varlimsup_{i \rightarrow \infty} \frac{\log \mathrm{~T}\left(r_{i}, u\right)}{\log r_{i}} & \leq \varlimsup_{i \rightarrow \infty} \frac{\log \mathrm{~T}\left(|\lambda|^{\left.m_{i} r_{0}, u\right)}\right.}{\log r_{i}} \tag{I4}\\
& \leq \varlimsup_{i \rightarrow \infty} \frac{m_{i} \log n(\mathrm{I}+\varepsilon)+\log \mathrm{T}\left(r_{0}, u\right)}{\log r_{i}} \\
& =\varlimsup_{i \rightarrow \infty} \frac{m_{i} \log n(\mathrm{I}+\varepsilon)}{\log r_{i}} \\
& =\frac{\log n(\mathrm{I}+\varepsilon)}{\log |\lambda|} .
\end{align*}
$$

As ε can be chosen arbitrarily small, we have

$$
\rho=u_{\rho} \leq \frac{\log n}{\log |\lambda|},
$$

a finite number. Now we can apply Lemma 2 to the function $\mathrm{T}(r, u)$ by choosing $\eta=\mu_{u}$ (the lower order of u). We have, for a sequence $\left\{r_{m}\right\}$, that

$$
\begin{equation*}
n(\mathrm{I}+\mathrm{o}(\mathrm{I}))=\frac{\mathrm{T}\left(|\lambda| r_{m}, u\right)}{\mathrm{T}\left(r_{m}, u\right)} \leq(\mathrm{I}+\mathrm{o}(\mathrm{I}))|\lambda|^{\mu_{u}} \tag{I5}
\end{equation*}
$$

for sufficiently large m.
By letting $m \rightarrow \infty$, we have

$$
n \leq|\lambda|^{\mu_{u}} .
$$

Hence

$$
\mu_{u} \geq \frac{\log n}{\log |\lambda|}
$$

Our theorem follows from this and the fact that $\mu_{u} \leq \mathrm{p}_{u}$.

4. Concluding Remark

In conclusion we mention that the argument used in the proof of Theorem I can be adopted to the study of the growth of the entire solutions for functional-differential of the form:

$$
\mathrm{P}\left(u_{1}\left(\lambda_{1}+z\right), u\left(\lambda_{2}+z\right), \cdots, u\left(\lambda_{l}+z\right)\right)=h\left(u^{(m)}(z)\right) \quad \text { with } \lambda_{i}(i=1,2 \cdots)
$$

being arbitrary constants, and for this equation a conclusion similar to that of Theorem i can be drawn.

References

[I] I. N. Baker, Problems and solutions, «The Amer. Math. monthly», 563 (1964).
[2] J. Clunie, The composition of entire and meromorphic functions, "Mathematical essays dedicated to A. T. MacIntyre», Ohio Univ. Press, 78 (1970).
[3] A. Edrei, The deficiencies of meromorphic functions of finite lower order, «Duke Math. Jour. ॥, 31, 1-22 (1964).
[4] A. Edrei, Sums of deficiencies of meromorphic functions, «J. d'Analyse Math.», I4, 79-107 (1965).
[5] A. Edrei, A local form of the Phragmen-Lindelöf indicator, «Mathematika», 17, 149-172 (1970).
[6] A. Edrei and W. H. J. Fuchs, On the zeros of $f(g(z))$ when f and g are entire functions, "Jour. Analyse Math.», I2, 243-255. (1964).
[7] R. Goldstein, On deficient values of meromorphic functions satisfying a certain functional equation, "AEQ. Math.», 5, 76 (1970).
[8] M. Kuczma, Functional equations in a single variable, "Polska Akademia Nauk», Monografie Matematyezne, Tom 46, Warszawa, 1968.
[9] G. Valiron, Lectures on the general theory of integral functions, Toulouse, 64 (1923).
[io] H. Wittich, Neure untersuchungen über eindentige analytische Funktionen, SpringerVerlag Berlin, Heidelberg, New York 1968.

