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Algebra topologica. — Function Algebras over Valued Fields 
and Measures. Nota I di G e o r g e  B a c h m a n , E d w a r d  B e c k e n s t e in  

e L a w r e n c e  N a r ic i  (* (**)>, presentata (*#), dal Corrisp. G . Z a p p a .

R iassunto . — Si studia l’algebra topologica F(T) delle funzioni continue che appli
cano uno spazio O-dimensionale T in un campo valutato non archimedeo completo, munito 
della topologia compatto-aperta.

In this paper we study the structure of the topological algebra F(T) 
of continuous functions taking a O-dimensional space T into a complete 
nonarchimedean valued field F endowed with compact-open topology. In 
particular we completely characterize the dual space F(T)' of F(T). In [2] 
we showed that a semisimple complete barreled Q-algebra X is a uniform 
algebra if and only if the spectral radius norm generates a topology of the 
dual pair (X , X'). In this paper (Theorem 1) we develop a version of this 
result for topological algebras over nonarchimedean valued fields.

In [3] we developed a notion of support of a continuous linear functional 
on F(T). There we showed that when T is a Lindelöf space, the support has 
properties which make it useful in a number of applications. The development 
of the support’s properties was effected without reference to a measure on 
T or representation theory. The support notion was then used to prove an 
analog of a classical Theorem of Nachbin [9, p. 471] in which a necessary 
and sufficient condition for F(T) to be F-barreled when F(T) carries the 
compact-open topology was developed.

Here we develop a Riesz-type representation theory for F(T) and show 
that the properties of support developed in [3] for Lindelöf spaces T also 
obtain if T  ià merely O-dimensional (Theorem 2).

In the last section, Sec. 3, of this paper we consider zero-one measures 
on T taking values in a nonarchimedean valued field F where F is assumed 
not to contain ]/— 1 . We show that the homomorphisms of F(T) into F are 
just the evaluation maps if and only if a certain collection of zero-one mea
sures have nonempty support. We then show that if F is a local field without 
]/—  I and T is a Lindelöf space, then the homomorphisms of F(T) into F 
are just the evaluation maps.

In Sec. 3 we also construct a zero-one measure with empty support 
(Example 2). From this example we show that there are bounded measures 
with compact support on T which do not generate continuous linear functio
nals on F(T). We also exhibit a discontinuous linear functional on a dense 
subalgebra of F(T).

(*) Polytecnic Institute of Brooklyn, New York and St. John’s University, Jamaica, N.Y.
(**) Nella seduta del 13 novembre 1971.
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I. Representation theory when T is compact

Throughout this section T is a O-dimensional compact Hausdorff space, 
F a complete nontrivially valued nonarchimedean field, and F(T) the topolo
gical algebra of continuous functions (with pointwise operations) mapping 
T into F with the sup-norm topology. The collection of dopen ( =  closed and 
open) subsets of T  is denoted by S.

DEFINITION i . A bounded measure on T is a function p mapping S into 
F satisfying the following two conditions:

(a) for U , V e S  such that U n  V =  0  , p (U U V) =  p (U) +  p (V);
(b) there exists N >  o such that for each U € S , | p (U) | <  N.

Van Rooij and Schikof ([13]) considered measures on O-dimensional 
spaces and defined the notion of a measure in a slightly different manner. 
In the case when T is compact, however, Definition 1 yields the same type 
of measure developed in [13].

When one has a measure on T satisfying the conditions of Definition 1 
a “ Riemann in tegral” of function /  in F(T) m ay be defined as follows: Let 
P =  { U i , • • - , U „} be a family of clopen sets which form a disjoint partition 
of T, let be any point in U,-, let V ,-(/) denote the oscillation of /  on U,- 
(which must be finite for each i , 1 <  i <  n, and let dv — sup,-Vf- ( / ) .  Then

/ / d p  =  lim 2  f ( x ì) V- (V ) •
J  a L —>0 2 = 1
T

As is shown in [8], j f  d[i exists for all f e  F(T); other properties of 

are also discussed there. At times I f  d[i will be denoted as I ( /) .
T

T
This integral is of course a linear functional mapping F(T) into F. If 

U € S' and ku is the characteristic function of U, then K k f)  — p,(U). More
over I I ( / ) |  <  N ll/ll where N is as in Definition i, and | |/ | |  =. sup | / ( T ) |  . 
Thud I is a continuous linear functional on F(T). Conversely we have:

Proposition i . Let J e F ^ ) 7. 

T; such that J ( / )  =  J /d [ x .
Then there is a bounded measure (x on

Proof, For each U € S take p. (U) to be J (^u)- Since J is continuous, 
there exists N >  o such that | J (kf) \ <  N \\ku || =  N. Thus y. is a bounded 
measure.

Since for any U 1 , • • •, \Jn € S, and e U- for each i f

Tif(xì)  J (^u,o =  2 / ( ^ )  i1 (u,-)1=1 2=1
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then, by the continuity of J and the fact that 2/  (xt)  k\j. converges uniformly 

to /  as sup,- V,. (/)-»■ o , J ( / )  == J  f d p .
T

Clearly the functions of the form Z f  f c )  k Uf. are dense in F(T), so that 
the map J -> p introduced in Proposition I is injective.

Let B(T) denote the set of bounded measures on T. W ith respect to the 
natural operations of addition of bounded measures and multiplication by a 
scalar, B(T) is a vector space over F. It is a normed space with respect to 
the norm introduced in the definition below.

D e fin it io n  2. For peB(T), the norm of p, is given by ||jx|| =  sup |p (U )|.

Proposition 2. The continuous dual F(T)' of F(T) is isometrically 
isomorphic to B(T).

Proof. Let Je F (T ) '. We map J into the following B(T): I f U e S ,  take 
P (U) =  J (^u). It is evident that the map J -> y. of Proposition 1 establishes 
an algebraic isomorphism between F(T)' and B(T). To show that it is also 
an isometry, it only remains to show that ||J|| =  sup |J  ( / ) | / | | / | |  =  sup I [ t(U ) |.

j Q -ÇJ Q  g

Since | J ( / ) |  <  ll/ll |||x II for any f e  F(T) by previous arguments, it is clear 
that IIJII <  | |p| | .  To obtain the reverse inequality, let £ > o  be given and 
choose U e S  such that | p (U) | >  J| p || — e. Hence |J (kf)  | =  | p (U) | =
=  IJ (^u) J/|| k\j II implies IIJII >  lli Ĥ — s for all s >  o. This completes the 
proof.

As a result of this representation Theorem for the dual space of the 
V*—algebra F(T) [io, p. 148] and the applicability of the Hahn-Banach 
Theorem for normed linear spaces over spherically complete fields, we may 
now state an analog of [2, Theorem 4]:

Theorem i. Let X be a commutative complete nonarchimedean locally 
multiplicatively F-convex algebra with identity over a local fie ld  F. Assume 
that X ts a Semisimple F—barreled Q—algebra and a projective lim it of a fa m ily  
of Gelfand algebras [10, p. 106]. Then X is a uniform algebra i f  and only i f  
the topology generated by the spectral radius norm is a topology of the dual 
pair  (X , X').

2.j Representation theory when T is not compact

In this section T is a O—dimensional Hausdorff space and F is a discretely 
valued field. F(T) carries the compact-open topology.

D efinition i . Let p be a bounded measure on T and let denote the 
set of all subsets U € S such that for each dopen subset W of U , p (W) =  0.

Definition s .  The support F^ of a bounded measure p is the comple
ment of If F^ is compact, then p is said to have com
pact support.
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We show in the next section that there is a bounded measure with com
pact support which is not a measure in the sense of van Rooij and Schikof 
([13]). In this section we obtain a 1 — 1 correspondence between certain 
bounded measures with compact support and continuous linear functionals 
on F(T). We also show in the next section that there is a bounded measure 
with compact support which does not produce a continuous linear functional.

DEFINITION 3. Let L be a compact subset of T. L is called a bounding 
set for the linear functional J e F(T)' if there exists NL >  o such that 
IJ ( / ) |  <  Nl  sup | / ( 0 | =  Nl  | | / | | l  for each f e  F(T).

t € L
Clearly bounding sets exist for each J e F(T)'.

D efinition 4. Let L be a compact subset of T and let J € F (T)'. L is 
called a vanishing set for J if | | / | |L =  o implies J ( / )  =  0.

Of course a bounding set for a continuous linear functional is a vanishing 
set. We now prove the converse.

PROPOSITION 3. I f  L is a vanishing set fo r  a continuous linear functional 
J on F(T), then L is a bounding set fo r  J.

Proof. Suppose L is a vanishing set for J and let f e  F(T). Let / *  
denote the restriction of /  to L and observe that all functions in F(L) can 
be extended to the “Stone-Cech ” compactification ß (T) of T ([3, p. 8], [5], 
[7, p. 152]). Consider the map

J * : F ( L ) - ^ F

J* is seen to be well-defined because L is a vanishing set. It is evident that 
J* is a linear functional on F(L). To see that J* is continuous, let ( / / )  be 
a net of functions in F(L) converging uniformly to O on L. By the Ellis- 
Tietz,e extension Theorem ([5]) we see that each /,* can be extended to ß(T) 
(and therefore to T) in such a way that the extension, denoted by f s, 
satisfies

sup I/, 001 = It f s  113 (T) = ll/*llL = sup I f s  (01 •*eß(T) t e r

Thus the net (f s) converges uniformly to O on T; hence f s - * o  in the compact- 
open topology on F(T). As J (/,) =  J * ( /f*) and J is continuous, we see 
that J* ( /* ) ->  o so J* is seen to be continuous. By Proposition 1 there

ç
exists a bounded measure pi* on L such that J * ( /  ) — J ( / )  =  / *  dpi*.

L
As |J* (/* ) | <  Il f *  ||L J) piII j it is seen that L is a bounding set for J.

D e fin it io n  5. Let J e F(T)', and let %  denote the set of all U e & such 
that ] (fhu) =  o for each f e  F(T). The set' Fj =  C ( u % )  is called the 
support of J.
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We show in the remainder of this section that associated with each 
J e F(T)' there is a bounded measure ^  with compact support such that 
Fj =  F ,^ , that the restriction p* of to Fj is a well-defined bounded mea

sure and J ( / )  =  j f *  dp,*. Thqs it follows that Fj =  F (ij is a bounding

set for J. It will also be seen that it is the unique minimal bounding set.

Proposition 4. Let J be a continuous linear functional on F(T). Then-. 
(a) i f  U e %  and  W is a dopen subset of U, then W e %  ; (b) %  is a ring
of sets.

Proof. To prove (a) we observe for any f e  F(T) and any dopen subset 
W of U e ®j that fk w  = f k w hu ■ To prove (b) we first note that if U x, • • ■ ,U„ 
are pairwise disjoint dopen sets, then, letting U =  u U ,- , ku =  hhy..  Thus 
U U ; s ® j. This, together with (a) implies (b).

Proposition 5. Let J e F(T)'. Then-, (a) the support Fj o f ]  is compact, 
Fj =  0  i f  and only i f  J is trivial-, (b) i f  G e S and  G D Fj 0 ,  then there 
exists f  e F(T) such that f  vanishes on CG and J ( / )  =  1.

Proof, (a): If J is trivial then S =  ©j and Fj is empty. Conversely 
suppose Fj =  0  and that J is nontrivial. Then there exists a compact 
set L which is a bounding set for J and g  e F(T) such that J (g) =t= o. As 
Fj =  0 , U®j =  T  so there exist U j U„ e %  such that L C UU, =  W. 
As L is a bounding set for J , L is a vanishing set. Thus C W e % .  By 
Proposition 4 (b) then T e u  ©j • Therefore J is trivial.

To show that Fj is compact we observe that if U C CL and U e §, then 
U e ©j because L is a vanishing set. Hence CL C U ©j and Fj C L.

(b): For G € S, if Fj O G =j= 0 , then G e % .  Thus there is some
ë  e F(T) such that J (ghf)  =j= °. Now let f  = ]  ( g k f f 1 g kG .

Lemma i. Let J e  F(T); and suppose that any dopen set W containing 
Fj has the property that whenever f e  F(T) vanishes on W then J ( / )  =  o. 
Then Fj is a vanishing set fo r  J .

Proof. Let /  vanish on Fj and let A n =  {TeT|  \ f ( t ) \  <  1 j n } . As 
AMe S for each n and F j C A „ ,  then J ( / )  =  J ( f k j J  + J ( # c a #) =  J ( fkK ). 
As |J ( 7% ) |  <  N l \\fkAn\\h <  N l ( i /w) for some compact set L C T  and any 
n >  o , J (*/) =5= o.

Lemma 2. I f  J e F(T)' and  T  is a Lindelöf space, then Fj is a vanish- 
ing set.

Proof. Ljet Fj be a subset of a clopen set W. Since CW is closed and
00

C W C U®J,  there exist U x , e ©j such that C W C UU,-. Since ®j is a
2=1

ring of sets, we m ay assume that the family (U,) is pairwise disjoint. Thus
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OO

CW — U (U,- O CW) and, letting U,- O CW =  V,- for each 2, we see that each
V=i OO

Hence kcw =  7j  ky. where the convergence of the series is point-
z = 1

wise. If L is any compact subset of T  we see that there is some N >  o

such that L n  CW — L n u  v ,
i = l

n

=  U (L n  V,-) for any n >  N. Thus

sup
2 G L

ecw - 2 =  o for 72 >  N

and the series is seen to converge in the compact-open topology. If /
( OO \ OO
/  2  J  =  2  J ( /^ O  =  o. The

2=1 /  , « = i

desired result now follows from Lemma 1.

Lemma 3. I f  J e  F(T)' and T is a compact space, Fj 2V a vanish
ing set.

Proof. We show that if Fj is a subset of a clopen set W and /  vanishes 
on W, then J ( / )  =  o. By Lemma 1 it will then follow that Fj is a vanish
ing set.

To do this let Fj be a subset of the clopen set W. Since W  is clopen and 
therefore CW is clopen and compact, there exist V,- 6 % , 2 =  1 , 2 , • • - , 72,

n

such that CW =  U  V2-. As %  is a ring of sets, CW e % . Hence if /
i = 1

vanishes on W, then J ( / )  =  J ( fk cw) =  o.
We now prove that if T  is any O-dimensional space and J e F(T)', Fj 

is a vanishing set for J. This property and the properties of Fj proved in 
Proposition 5 are the properties of support which made the applications in 
[3] possible; in particular these properties enabled the Authors in [3, Sec. 3, 
Theorem 3] to obtain a generalization of [9, Theorem 1].

THEOREM 2. I f  J e  F(T)' and pj is the bounded measure defined by taking 
p T(U) =J(k{j) fo r  each U 6§, then F ^  =  Fj and Fj is the m inim al (with 
respect to set-inclusion) vanishing set fo r  J.

Proof. Let L  be any vanishing set for J and consider the bounded 
measure p* on § f i L  defined by taking p* ( L f i U )  =  Pj (U) . =  J (kfi) for 
►any U e £. For U , V e £, if U n  L =  V n  L, then ( U - U n V ) n L  =  0  
and, since L is a vanishing set, J(^u-unv) =  °- Thus J(k\j) =J(^unv)  — 
and p* is seen to be well-defined. We see from the proofs of Propositions 1

and 3 that J* (/* ) = J  ( / )  =  JV * d p * , where / *  denotes the restriction of
L

f  e F(T) to the vanishing set L.
We next show that F j =  Fj* , F ^  =  F̂ ,* and F^* =  Fj*. Once this 

has been done then, since pJ# =  p* by definition and L is compact, Lemma 2
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or Lemma 3 implies that

f  (/*) -  J (/) = J >  =  j >  d„j =, j f  dpt*.
L Fj* Fj

It then follows that Fj is a vanishing set for J.
To show that Fj =  Fj* we note that J (# u )  =  J * ( / V , l )  and there

fore U e ®j if and only if U n  L e ®j*. Since Fj C L (see proof of Propo
sition 5) it follows that C (U®j) =  C (u®j*).

To show that F ^  =  F„* we simply note that ^ ( U )  =  fj.*(Ur>L) and 
therefore U f i L e ^ j  if and only if U e ©„ .

To  show that F„j =  Fj*, note that if U n L e % , ,  then J*(£WnL) =  
=  J*0W ) =  o for any W n L C U n L .  Hence [t* (W n L ) =  p.* (U n L ) =  o 
for all W n L C U n L  and therefore U f i L f ® ^ .  Conversely if U n L

then, to compute ^upiL dp* we need only consider partitions (U£ n  L),
L

1 ~  1 > 2 > ‘ * * > of L such that Uy P) L is a subset of U fi L or U 2- f i L  is a 
subset of CU f i b  for each i , i ^  i  <L n. For such partitions the associated

partial sums will be zero. Thus J * ( / * i u nL) =  J / ^ u n L  d^* =  o and

U n L e S j . .  Hence % , =  and F j. =  F „ j. G
The minimality and uniqueness of Fj follows from Proposition 5 (ó). 
In [3] we proved the following Theorem: Let F(T) be the algebra of

continuous functions mapping the O-dimensional Hausdorff space T into the 
complete discrete field F with compact-open topology, and let Fj be a vanishing 
set for each J 6 F(T)'. Then F(T) is F-barreled if and only if for every E C T 
which is closed but not compact there is some f  G F(T) which is unbounded 
on E. We observe that Theorem 2 shows this result to be true for O-dimen
sional Hausdorff spaces T

Consider the following question: “ Given any bounded measure p
with compact support on T, is there a continuous linear functional 
J e F(T)' associated with p such that J (ku) =  p(U) for each U e S, so

that dp* ~  j f *  dp*? A natural way to begin to approach
V  L

this question i? by considering the restriction p* of pi to F ^ f iL  Then 

define J by taking J  ( / )  =  j f  dp, where f *  denotes the restriction of

/ € F (T) to F |j . By previous arguments J is a well-defined continuous 
linear functional on F(T) into F if p*(U D F^) =  p(U) is a well-defined

(1) It has come to the Authors’ attention that this result was proved by R. L. Ellis using 
other techniques in his doctoral dissertation (Duke University, 1966) for spherically complete 
fields.

21. — RENDICONTI 1971, Voi. LI, fase. 5.
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bounded measure on F^piS.  Conversely if the desired continuous linear 
functional J exists, then the map |x defined on n  § for each U e S by 
[x* (U O F^) — (x*(U O Fj) =  (x(U) =  J (ku) is well-defined by Theorem 2. 
Thus, in answer to the original question, we may say: “ There is a J e F(T)r
such that J (k\j) =  [x (U) for each U 6 § if and only if the map [x* defined on 
F(xD § by fx*(U n  Ffj,) — (x(U) for each U e S is well-defined Example 2 
of the next section will show that there are bounded measures with empty 
support and bounded measures with nonempty compact support whose 
restrictions to F ^ f iS  are not well-defined. Clearly such measures cannot 
correspond to continuous linear functionals in the manner described above. 
We note also that the correspondence [x -> J so obtained is injective because 
the linear span X =  [{k\j | U 6 §}] of the characteristic functions of the 
clopen sets is dense in F(T); thus if J and J ' are continuous linear functionals 
and J (k\j) =  ]' (kf)  for each U e ^ ,  J and J ' must agree on all of F(T). In 
summary we have:

Theorem 3. Let B(T)r denote the linear space of bounded measures [x 
with compact nonempty support F !JL such that the restriction of to F^ O § 
(as defined above) is well-defined. Then B(T)^ is linearly isomorphic to F(T)'.

As has already been noted, a bounded measure jx with nonempty compact 
support on T need not determine a continuous linear functional on F(T). 
Such a bounded measure determines a linear functional J on X — [{hu | U e §}] 
via J (fiitx- h\j^ =  Hoc,- [x (U2-), however. If J is continuous on this dense 
subspace of F(T), J m ay be extended (by continuity) to a continuous linear 
functional ] f on F(T). Since, for any U € S , ]/ (kfi) =  J (kf)  =  fx(U), Theo
rem 2 implies that the restriction [x* of [x to F̂ , n  S is well-defined. Thus 
if (x € B (T /, J cannot be continuous.


