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Matematica. —  Maximal monotonicity and m-accretivity of 
A  +  B. N ota di B ruce C alvert p r e sen ta ta ^  dal Corrisp. 
G. S tampacchia.

RIASSUNTO. Si danno condizioni su due operatori A e B entram bi massimali mono
toni (rispettivam ente ^ -ace re tiv i) affinchè A +  B sia massimale monotono (m -accretivo). 
L ’ipotesi usuale che A sia lim itato rispetto a B è sostituita dalla condizione più debole che 
A e B « puntino nella stessa direzione ». Quando uno degli operatori è il subgradiente di una 
funzione convessa si ottengono risultati più generali.

Let X be a B anach space over the reals R with dual X*. The value 
of x * e X* at x  e X will be denoted by either (x*, x) or (x , x*). A  subset A  
of X X X* is called monotone if for [x , x*] and [u , u*] in A  we have

(x* —  u *, x  —  u) >  o .

A m onotone set is m axim al if it is not properly contained in another m onotone 
set. Equivalently  we regard A  as a function from X to P  (X*), subsets of X*. 
Let A  be a subset of X X X*.

One defines A x  =  {z* : [x , s*] e A} , A“ 1** =  {x  : z* e A *} , D (A) =  
=  {x  : A x  =j= 0  } , R (A) =  U {A x  : x  in X }, for a in R , (aA) x  =  { ay* : y* 
in A *} , (A +  B) *  =  U {y* +  ** : y* in A x ., s* in B*} for B : X - a P  (X*). 
If  C is a nonem pty subset of X or X*, one defines | C | =  inf { || x  || : x  e C } .

If  A  is a subset of X X X, or equivalently a function from X to P  (X), 
one defines A x  , A“ 1, D (A) , R  (A) , aA , A  +  B similarly. Then A  is accre
tive if for all X > o  (I +  XA)“ 1 is nonexpansive, i.e. for [x , y ]  and [u , v\ 
in A,

II (A +  ty)  —  (u +  \v) II >  \\x —  u\\.

A  is ^ —accretive if also R  (I 4" XA) =  X for X >  o. Conditions of relative 
boundedness have been given for the sum A  -f  B of two nonlinear m axim al 
m onotone [3, T h  2.3] o r./» -accretive [7, T h 9 .22], [11, T h  10.2], [12, T h 4.2] 
operators to h^ve the same property. The idea of this paper is tha t A x  and Bx 
should point in the same direction for x  in D (A) pi D (B). In  other words, 
just as m onotonicity and accretivity are directional ra ther than  boundedness 
properties, perturbation  theorem s for monotone and accretive operators m ay 
be given under directional hypotheses. We suppose / : X - > ( — 0 0 ,0 0 ]  is 
convex, not identically 00, and lower semicontinuous. Then ÿ : X ^ P  (X*), 
the subdifferential of / ,  is defined by w * e df (x) iff for all y  in X

/ ( y )  >  (w *,y —  x) + / 0 ) .

(*) D urante lo svolgimento di questo lavoro, l ’autore ha usufruito di una borsa di 
studio presso l ’Istituto per le Applicazioni del Calcolo del C .N.R., Roma.

(**) Nella seduta del 12 dicembre 1970.
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Then, [14], df is m axim al monotone. Browder [8] asks for conditions on m axi
mal monotone A  for A  -\~ df to be m axim al monotone. These are given in 
Theorem  2.

The subdifferential of f  (pc) =  | |^ | |2/2 is denoted by J, and called the 
duality  map. Sim ilar results to this paper would arise if we took / t o  be other 
functions of the norm  as given in e.g. [6]. We recall the following theorem  
of Browder [5, 6].

Let X be a reflexive Banach space with X , X* strictly convex. Let 
A  : X -> P(X*)  be m onotone. Then A is m axim al monotone iff R (J-f- A) =  X*. 
We recall the following theorem  of Brezis-Crandall-Pazy [3].

Let X be a reflexive Banach space with X , X* strictly convex. Let 
A : X -> P  (X*) and B : X -> P  (X*) be m axim al monotone. By Browder’s 
theorem, given X >  o, z in X, there exists a unique [ ^  , ^ ] € A  with 
J (zk —  z) +  X*î =  o. Defining A^ : X X* by z \  =  A*, (z), by [3] and [5] 
B +  Ax is m axim al m onotone, so tha t by Browder’s theorem, given / *  in X* 
there exists a unique x  in X such that

( 0  J x \  +  b / * -

T h e n / *  e R  (J +  A  +  B) iff || A*, x \  || is bounded as X -> o.

Theorem i: Let X be a reflexive Banach space with X , X* strictly convex. 
Suppose A  and B from  X to P  (X*) are both maximal monotone. Suppose

(2) (I +  X J-1 A)“ 1 D (B) C D (B) for X >  o.

Suppose k(r)} c(r) and d  (f) are continuous functions of r , k (r) <  1 fo r  every 
r  , r2fd (r) -> 00 when r  00 such that fo r  x  in D (B) n  D (A) and x* in A x  
there exists jy* in IBx such that

(3) O'*, r 1^*) >  —  ^ ( ! k | | )  |k*H2 — ^(||a r ||)  ^ ( i |^ * | |) .

Then A  +  B : X ^  P (X*) is maximal monotone.

Proof. I t follows from (2) tha t there exists % in D (A) n D (B), and lett
ing A (x) =  A (x +  %) , B (x) =  B (x +  x) we have o G D (Ä) n  D (B). F u r
therm ore (2) and (3) hold for Ä  and B, after changing k and c. Hence, we 
m ay assume o € D (A) n  D (B). By Browder’s theorem  we have to show 
R  (A +  B +  J ) '=. X. Consequently it suffices to show that given /* ,  the 
A x xx in (1) are bounded as X-> o. We set vx =  (I +  XJT1 A)“ 1^ .  Then 
vx is in D (B) by (2). Also AxXx is in Avx. Take d* in B ^  such th a t (3) 
gives

(ßx , r 1 x x) >  —  k (\\vk \\)\\Ax X l \f —  c (\\vk \\) d  (II A* x x || ) .

Suppose b*x is the element of B (xx) giving equality in (i), that is

(4) A x *x +  b* +  Jx% =/*■
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Since B is monotone, (d* —  b* , v\ —  xx) >  o. We take the product of (4) 
with J ^ A x x x  =  X '1 (xx —  vi).

HA/. II2 =  ( / *  -  Jxx -  b t , J“ 1 A , xx)

=  (ft. —  b t , X-1 (xx— .vx)) +  ( /*  -  h x  -  d t , J“ 1 A , *x) ,

(S) \ \ A x X x f < \ \ f - J x x \ \  | |A , * , | |+ i ( I M I )  ||A ,a:x ||2 +  U I I ^ | |) ^ ( | |A ,^ | |) .

We claim is bounded as X -> o, taking the product of (4) with x x , and 
taking b* in B (o)

Il *x II2 <  (xx —  O , J O ,)  -  J(o)) +  Ox —  o , A , *x +  b*x — Ax o — b*)

< I U x II ( I I /* II -H IA x (o)|| + 10* 11) .

Since [I Ax (o)|| <  |A ( o ) | by Lem m a 1.3 (d) of [3], after dividing by || %x || 
we have \\xx || < M .  We claim vx is bounded as X-a o. T aking the product 
of XAx xx =  J (xx —  vx) with vx gives ( J (xx — vx) ,vx) >  X (a*, vx) for any of 
in A  (o), hence || * , — vx ||2 <  X (a*, x x —  vx) +  ( J Ox —  vi) , Xx) —  X (a*, xx) 
and consequently || xx —  vx [|2 — ( | A  (o) | +  M) |0 ,  — v-K || -— | A (o) | M <  o , 
for X < i, which implies || xx — z>x|| is bounded, and consequently Vx is bounded. 
From  (5) it now follows th a t Ax Xx is bounded as X -> o. q.e.d.

Remark 1 : Two special cases of (3) are:

(3') O'*. J-1 A )  >  o ,

(3") lb*II < ^ ( 1011) 10*11 +  OIUII).

i.e. \ B x \ <  k (1011) |A * | +  r ( | 0 | | ) ,

which is Theorem  2.3 of [3]. We note in [3, Theorem  2.3] the approxim a
tions Bx are taken on B ra ther than  A. In  Theorem  3.2 of [3], to show tha t 
— A +  3^ k i$ m axim al monotone, a calculation like th a t in Theorem  1 is used.

Also, in Theorem  3.1 of [3] it is the condition (3') th a t gives — A +  ß 
m axim al monotone. In  [4] it is supposed tha t 9f  and B are m axim al monotone 
and satisfy a condition like (3") in H ilbert space, and shown tha t the semi
group satisfies regularity  conditions.

C o r o lla r y  i : Suppose X a reflexive Banach space, A , B : X -> P  (X*) 
both maximal monotone, B“ 1 or A  being locally bounded, R (A ) C D (B ). 
I f  BA is accretive then it is m-accretive.

Proof : Let J be the duality  m ap for an equivalent norm  m aking X , X* 
strictly convex [1 ]. By the proof of Theorem  2 of [10] it suffices to show 
A“ 1 +  B is m axim al monotone. We define A , B by A( x )  =  A ( x  +  x) 
and B(x*) B(#*) — w  where [%,w] e BA. BA is accretive and [o, o] e BA.
Consequently we m ay assume [o , o] € BA. Hence for b in B (x*) and x * 
in A x , (Jx  , b) > 0 .  This is condition (3') of R em ark 1. Condition (2) 
follows from R (A ) C D (B ). q.e.d.
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We now tu rn  to the case where A =  a^K. Suppose K is a closed convex 
subset of a Banach space, the indicator function is defined to be zero on K 
and 00 elsewhere. We recall th a t i f / i s  a lower semicontinuous function from X 
to (— 0 0 ,0 0 ] ,  we say w  is in df (pc) if for all y  in X

(6) f ( y )  > ( w  , y  —  x) + / (x) ,

and df is m axim al m onotone if /  is not identically 0 0 . Consequently 
is m axim al m onotone for K  nonem pty.

COROLLARY 2: Let X be a Banach space with X and  X* strictly convex 
and  K  a closed convex subset of X. For x  in X let Px be the nearest point to x  
on K. Suppose B : X P  (X*) is maximal monotonei P (D (B)) C D (B), 
and fo r  y  in  D (B) there exists b* in  BPy  such that

y , y — T ? y ) > — k(\ \Py \ \ ) \ \ y - - P y \ f - c ( W P y \ \ ) d ( \ \ y — -py \\)

where k , c , d  are as in Theorem 1. Then B -f- is maximal monotone.

Lemma i: Suppose X a reflexive Banach space with X and  X* strictly 
convex, K  a closed convex nonempty subset of X, P the projection taking x  to 
the nearest point on K. Let be the indicator function of K and let A >  o 
be given. Then (I -f- AJ“ 1 9^k )-1 =  P.

Proof. The Lem m a 3.8 of [9] showed (I -f- AJ“ 1 d ^ C y l x D P x  for X* 
strictly  convex, Px being the set of nearest points to x  on K. W hen X is 
strictly  convex the left hand side has only one element, giving equality, q.e.d.

Proof of Corollary 2 : By the Lem m a P (D (B)) C D (B) gives (2) of Theo
rem  I.  For (3), given x  in K f iD ( B )  and in d^K(x), let y  =  x  +  J“ 1 x*, 
and take for y * of (3) the b* given in the statem ent of the corollary, q.e.d.

THEOREM 2: Suppose X a reflexive Banach space zvith X , X* strictly
convex. Suppose A  : X P  (X ) is maximal monotone, f  : X -» (— 0 0 ,0 0 ]  
is convex and lower semicontinuous, k , c , d  are functions as given in Theorem I .  

Suppose that fo r  [v , a*] in A  , A >  o

(7) f ( v  +  AJ-1«*) > f ( v )  — A (k ( H I )  ||«*||2 +  £ ( H | )  d  (il «*11)) •

Then is m axim al monotone.

Proof : By (7) we m ay take % in D (A) n D (f), i.e. f  (x) < 00.
Let f ( y ) = f ( v - P  x) and Ä  (y) =  A  (y +  x). Then df {x +  x) =  df (x). 

Consequently we m ust show Ä j - d f  is m axim al monotone, or R (Ä -f-a /+ J) = X * , 
by B row der’s Theorem . But o G D (Ä) n  D (/), and (7) holds with A  and 

f  replaced by A  and /. Consequently we m ay assume o G D ( / )  n  D (A). 
We need to show th a t A^ x^  given in (1) is bounded as A -> o. Suppose

+  df ( x j )  +  ](xk) o / * .

This m eans by (6) th a t for v in X,

(8) /  (fl) ( /*  —  Axxx  —  Jxx , v — x x) + f  (xj) .
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Letting vi  =  (I +  XJ 1A) 1 xx,  in particular

/  (vx) >  ( /*  ~  A x x —  }xx , —  XJ“ 1 A x xx) + f ( x x )  .
But by (7),

f  (vx) < f  (xx) +  X (k (Il ^  II) \\AxXx II2 +cQ\ vx  ||) d  (|| A , ^  ||)) .
A fter dividing by X, we have

||A^ | | 2 < /£(IKI|) ||A,^ ||2 + r (Unii) d  (II Ax nil) + ||/*— J*x|| ||A,n|| ,
which yields (5).

We now let v =  o in (8), and obtain

Iln  II2 <  -  (Ai n  , x x )  +  Iki II il/* II +/(o) — f ( x x )

Take [y, w*] 6 df. Since (Ax x x , x x) > ( A x o,  x x) and f ( x x) >  (w*, x k — y) + f ( y ) ,  
it follows that

I K  II2 <11 ^11 ( | |/* ||H - ||a /* || +11 A l (o)||) + f ( p ) - f ( y ) - ( w * , y ) .

Since A x (o) are bounded, it follows th a t x x are bounded.
As in Theorem  I, vx are bounded as X -> o, and hence A x x x are bounded, 

q.e.d.

Remark 2 : A  special case of (7) is tha t for x  in X and X >  o 

(70 / ( ( I  +  XJ"1 A)-1 x) < f ( x ) .

One sees th a t Theorem s 1 and 2 are similar, and if (7) implied (2) and (3) 
(or more sim ply '(7') im plied (2) and (3')) then Theorem  1 would im ply 
Theorem  2. However, this is not true in general, although the converse holds.

Remark 3 : Suppose X, A  and /  are as in Theorem  2, w ithout (7).
Suppose for X > o, (I +  X J^A )-1 D (a / )C D  (df), and for v in D (A) n  D (df) 
and <3* in A v  there exists b* in df (v) such th a t (£*, J"“1̂ * )) > 0 .  Then ( f )  
holds.

Proof : Suppose d* in Az;, X > o , and v +  XJ“ 1 a* =  x. We w ant to 
show f  (v) < f ( x ) .  If  x e D ( d f )  so does v by assumption, and by (6), for 
all b* in df (v), f  (v -j~ X J“ 1 a*) > f ( v )  -f- (b*, XJ~l a*). By assum ption there 
exists b* in df (v) m aking (£*, >  o, giving f  (v) < f ( x ) .

Suppose now f ( x ) < o o ,  we claim there exists x n ->x, f ( x n) -> f ( x ) ,  
xn (ty)- This is because if K is the epigraph of / ,  K == {(x , k) e 
e X X R : k > f  (x)} it has supporting hyperplanes in X X R at a dense 
subset of the boundary by the Bishop Phelps theorem  [2]. Now 
(x , f ( x ) )  is in the boundary, and the supporting hyperplanes give xn in 
D ( d f )  w ith xn x ,  f  (xn) ~>f (x) [14]. Given X > o ,  (I +  XJ“ 1 A)“ 1#* 
converges weakly to (I +  X J^ A )“ 1^  by Lem m a 1.3 (c) of [3]. Since 
xn 6 D (df) , y ^ i  +  X J^A )“ 1^ )  < f ( x f ) .  Since /  is lower semicontinuous, 
/ ( * )  = / ( ( i  +  X J ^ A )-1^) <  E m /( ( I  +  X J ^ A )-1^ )  <  Hmf ( x n) =  f  (x). If  
f  (x) =  00, then f  (v) < f ( x ) .  q.e.d.
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Corollary i : Suppose X a reflexive Banach space, X , X* strictly convex, 
K a closed convex nonempty subset of X. For x  in X let Px be the nearest point 
to x  on K. Suppose, with c a function as in Theorem 1, fo r  x  in  X

f i x )  > / ( P * ) ~ ; ( l |P * | | )  ( |K  — * |a +  | K - * | >

Then df +  is m axim al monotone, and equal to 3 ( /  +  ^ K).

Proof : By Lem m a 1, with A  —- the condition (7) fails but the proof
of Theorem  2 gives 3f  + ' 9^k m axim al monotone. Since df +  3^k ^k)
and 3 ( /  +  ^k) is m onotone, the m axim ality  gives equality, q.e.d.

Corollary 2: Suppose X a reflexive Banach space with X , X* strictly 
convex, K  and  P as in Corollary 1, and B another closed convex nonempty sub- 
set of X. I f  P (B) C B then 9^k T  3^b =  3^bok •

Proof'. We take /  =  in Corollary 1. P (B ) C B  implies f i x )  > f ( P x ) .  
By Corollary 1, 9^ K +  9^b is m axim al monotone, and one sees =  ^bdk
q.e.d.

We will suppose X has uniform ly convex dual X*. Since A  : X P  (X) 
is accretive iff y  in A x  and v in A u implies (y —  v , J (x —  uj) >  o [7], 
[11], [12], the sum of two accretive operators is accretive.

Theorem 3: Suppose X a Banach space with X* uniformly convex. Suppose 
A  and  B are m-accretive, and fo r  X >  o

(9) (I + X A )"1 D (B ) C D (B ) .

Suppose fo r  v in  X there is a neighborhood N (y) of v, a function d  
such that r2/d(r) -> 00 when r  -> 00, and k in [0 , 1); such that fo r  x  in 
D (A) f i D (B) n  N (y) and a in A x  there exists b in Px such that

(10) (Ja , â) >  — k \ \ a f — d  (\\a\\) .

Then A  - f  B is m—accretive.

Proof. It is enough to alter the proof of [11, Th. 10.2] by taking approxim a
tions w ith Ax instead of B ^ O n e  uses the same calculation as in Theorem  1 
to show th a t if A^ Xx +  Pxx +  and x 0 as X -> o then A^ xx is
bounded, the equivalent of [11, 10.8] where BxVx are shown to be bounded, 
q.e.d.
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