ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Bruce Calvert

Maximal monotonicity and m-accretivity of A + B

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **49** (1970), n.6, p. 357–363. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1970_8_49_6_357_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Matematica. — Maximal monotonicity and m-accretivity of A+B. Nota di Bruce Calvert (*), presentata (**) dal Corrisp. G. Stampacchia.

RIASSUNTO. — Si danno condizioni su due operatori A e B entrambi massimali monotoni (rispettivamente m-accretivi) affinchè A+B sia massimale monotono (m-accretivo). L'ipotesi usuale che A sia limitato rispetto a B è sostituita dalla condizione più debole che A e B « puntino nella stessa direzione ». Quando uno degli operatori è il subgradiente di una funzione convessa si ottengono risultati più generali.

Let X be a Banach space over the reals R with dual X^* . The value of $x^* \in X^*$ at $x \in X$ will be denoted by either (x^*, x) or (x, x^*) . A subset A of $X \times X^*$ is called monotone if for $[x, x^*]$ and $[u, u^*]$ in A we have

$$(x^* - u^*, x - u) \ge 0.$$

A monotone set is maximal if it is not properly contained in another monotone set. Equivalently we regard A as a function from X to $P(X^*)$, subsets of X^* . Let A be a subset of $X \times X^*$.

One defines $Ax = \{z^* : [x, z^*] \in A\}$, $A^{-1}z^* = \{x : z^* \in Ax\}$, $D(A) = \{x : Ax \neq \emptyset\}$, $R(A) = \bigcup \{Ax : x \text{ in } X\}$, for α in R, $(\alpha A) x = \{\alpha y^* : y^* \text{ in } Ax\}$, $(A + B) x = \bigcup \{y^* + z^* : y^* \text{ in } Ax$, $z^* \text{ in } Bx\}$ for $B : X \to P(X^*)$. If C is a nonempty subset of X or X^* , one defines $|C| = \inf \{||x|| : x \in C\}$.

If A is a subset of X × X, or equivalently a function from X to P(X), one defines Ax, A^{-1} , D(A), R(A), αA , A+B similarly. Then A is accretive if for all $\lambda > o(I + \lambda A)^{-1}$ is nonexpansive, i.e. for [x, y] and [u, v] in A,

$$||(x + \lambda y) - (u + \lambda v)|| \ge ||x - u||.$$

A is m-accretive if also R (I + λ A) = X for $\lambda > 0$. Conditions of relative boundedness have been given for the sum A + B of two nonlinear maximal monotone [3, Th 2.3] or m-accretive [7, Th 9.22], [11, Th 10.2], [12, Th 4.2] operators to have the same property. The idea of this paper is that Ax and Bx should point in the same direction for x in D (A) \cap D (B). In other words, just as monotonicity and accretivity are directional rather than boundedness properties, perturbation theorems for monotone and accretive operators may be given under directional hypotheses. We suppose $f: X \to (-\infty, \infty]$ is convex, not identically ∞ , and lower semicontinuous. Then $\partial f: X \to P(X^*)$, the subdifferential of f, is defined by $w^* \in \partial f(x)$ iff for all y in X

$$f(y) \ge (w^*, y - x) + f(x).$$

^(*) Durante lo svolgimento di questo lavoro, l'autore ha usufruito di una borsa di studio presso l'Istituto per le Applicazioni del Calcolo del C.N.R., Roma.

^(**) Nella seduta del 12 dicembre 1970.

Then, [14], $\Im f$ is maximal monotone. Browder [8] asks for conditions on maximal monotone A for $A+\Im f$ to be maximal monotone. These are given in Theorem 2.

The subdifferential of $f(x) = ||x||^2/2$ is denoted by J, and called the duality map. Similar results to this paper would arise if we took f to be other functions of the norm as given in e.g. [6]. We recall the following theorem of Browder [5, 6].

Let X be a reflexive Banach space with X, X^* strictly convex. Let $A: X \to P(X^*)$ be monotone. Then A is maximal monotone iff $R(J+A)=X^*$. We recall the following theorem of Brezis-Crandall-Pazy [3].

Let X be a reflexive Banach space with X, X^* strictly convex. Let $A: X \to P(X^*)$ and $B: X \to P(X^*)$ be maximal monotone. By Browder's theorem, given $\lambda > 0$, z in X, there exists a unique $[z_{\lambda}, z_{\lambda}^*] \in A$ with $J(z_{\lambda} - z) + \lambda z_{\lambda}^* = 0$. Defining $A_{\lambda}: X \to X^*$ by $z_{\lambda}^* = A_{\lambda}(z)$, by [3] and [5] $B + A_{\lambda}$ is maximal monotone, so that by Browder's theorem, given f^* in X^* there exists a unique x in X such that

$$Jx_{\lambda} + A_{\lambda} x_{\lambda} + Bx_{\lambda} \ni f^{*}.$$

Then $f^* \in R(J + A + B)$ iff $||A_{\lambda} x_{\lambda}||$ is bounded as $\lambda \to 0$.

Theorem 1: Let X be a reflexive Banach space with X, X^* strictly convex. Suppose A and B from X to $P(X^*)$ are both maximal monotone. Suppose

(2)
$$(I + \lambda J^{-1} A)^{-1} D(B) \subset D(B) for \lambda > 0.$$

Suppose k(r), c(r) and d(r) are continuous functions of r, k(r) < 1 for every r, $r^2/d(r) \to \infty$ when $r \to \infty$ such that for x in $D(B) \cap D(A)$ and x^* in Ax there exists y^* in Bx such that

(3)
$$(y^*, J^{-1}x^*) \ge -k(||x||) ||x^*||^2 - c(||x||) d(||x^*||).$$

Then $A + B : X \to P(X^*)$ is maximal monotone.

Proof: It follows from (2) that there exists \tilde{x} in $D(A) \cap D(B)$, and letting $\tilde{A}(x) = A(x + \hat{x})$, $\tilde{B}(x) = B(x + \hat{x})$ we have $o \in D(\tilde{A}) \cap D(\tilde{B})$. Furthermore (2) and (3) hold for \tilde{A} and \tilde{B} , after changing k and c. Hence, we may assume $o \in D(A) \cap D(B)$. By Browder's theorem we have to show R(A + B + J) = X. Consequently it suffices to show that given f^* , the $A_{\lambda}x_{\lambda}$ in (1) are bounded as $\lambda \to o$. We set $v_{\lambda} = (I + \lambda J^{-1}A)^{-1}x_{\lambda}$. Then v_{λ} is in D(B) by (2). Also $A_{\lambda}x_{\lambda}$ is in Av_{λ} . Take d_{λ}^* in Bv_{λ} such that (3) gives

$$(d_{\lambda}^{*}, J^{-1} A_{\lambda} x_{\lambda}) \geq -k (\|v_{\lambda}\|) \|A_{\lambda} x_{\lambda}\|^{2} - c (\|v_{\lambda}\|) d(\|A_{\lambda} x_{\lambda}\|).$$

Suppose b_{λ}^{*} is the element of B (x_{λ}) giving equality in (1), that is

$$A_{\lambda} x_{\lambda} + b_{\lambda}^{*} + J x_{\lambda} = f^{*}.$$

Since B is monotone, $(d_{\lambda}^* - b_{\lambda}^*, v_{\lambda} - x_{\lambda}) \ge 0$. We take the product of (4) with $J^{-1}A_{\lambda} x_{\lambda} = \lambda^{-1} (x_{\lambda} - v_{\lambda})$.

$$\begin{split} \|\mathbf{A}_{\lambda} \, x_{\lambda}\|^{2} &= (f^{*} - \, \mathbf{J} x_{\lambda} - b_{\lambda}^{*} \, , \, \mathbf{J}^{-1} \mathbf{A}_{\lambda} \, x_{\lambda}) \\ &= (d_{\lambda}^{*} - b_{\lambda}^{*} \, , \, \lambda^{-1} (x_{\lambda} - v_{\lambda})) + (f^{*} - \, \mathbf{J} x_{\lambda} - d_{\lambda}^{*} \, , \, \mathbf{J}^{-1} \mathbf{A}_{\lambda} \, x_{\lambda}) \, , \end{split}$$

We claim x_{λ} is bounded as $\lambda \to 0$, taking the product of (4) with x_{λ} , and taking b^* in B (0)

$$||x_{\lambda}||^{2} \leq (x_{\lambda} - 0, J(x_{\lambda}) - J(0)) + (x_{\lambda} - 0, A_{\lambda} x_{\lambda} + b_{\lambda}^{*} - A_{\lambda} 0 - b^{*})$$

$$\leq ||x_{\lambda}|| (||f^{*}|| + ||A_{\lambda}(0)|| + ||b^{*}||).$$

Since $\|A_{\lambda}(o)\| \leq |A(o)|$ by Lemma 1.3 (d) of [3], after dividing by $\|x_{\lambda}\|$ we have $\|x_{\lambda}\| \leq M$. We claim v_{λ} is bounded as $\lambda \to o$. Taking the product of $\lambda A_{\lambda} x_{\lambda} = J(x_{\lambda} - v_{\lambda})$ with v_{λ} gives $(J(x_{\lambda} - v_{\lambda}), v_{\lambda}) \geq \lambda(a^{*}, v_{\lambda})$ for any a^{*} in A(o), hence $\|x_{\lambda} - v_{\lambda}\|^{2} \leq \lambda(a^{*}, x_{\lambda} - v_{\lambda}) + (J(x_{\lambda} - v_{\lambda}), x_{\lambda}) - \lambda(a^{*}, x_{\lambda})$ and consequently $\|x_{\lambda} - v_{\lambda}\|^{2} - (|A(o)| + M) \|x_{\lambda} - v_{\lambda}\| - |A(o)| M \leq o$, for $\lambda \leq I$, which implies $\|x_{\lambda} - v_{\lambda}\|$ is bounded, and consequently v_{λ} is bounded. From (5) it now follows that $A_{\lambda} x_{\lambda}$ is bounded as $\lambda \to o$. q.e.d.

Remark 1: Two special cases of (3) are:

$$(3')$$
 $(y^*, J^{-1}x^*) \ge 0$,

(3")
$$||y^*|| \le k (||x||) ||x^*|| + c (||x||),$$

i.e. $|Bx| \le k (||x||) |Ax| + c (||x||),$

which is Theorem 2.3 of [3]. We note in [3, Theorem 2.3] the approximations B_{λ} are taken on B rather than A. In Theorem 3.2 of [3], to show that $-\Delta + \partial \psi_{K}$ is maximal monotone, a calculation like that in Theorem 1 is used.

Also, in Theorem 3.1 of [3] it is the condition (3') that gives $-\Delta + \overline{\beta}$ maximal monotone. In [4] it is supposed that ∂f and B are maximal monotone and satisfy a condition like (3'') in Hilbert space, and shown that the semi-group satisfies regularity conditions.

COROLLARY 1: Suppose X a reflexive Banach space, A, B: $X \to P(X^*)$ both maximal monotone, B^{-1} or A being locally bounded, $R(A) \subset D(B)$. If BA is accretive then it is m-accretive.

Proof: Let J be the duality map for an equivalent norm making X, X* strictly convex [1]. By the proof of Theorem 2 of [10] it suffices to show $A^{-1} + B$ is maximal monotone. We define \tilde{A} , \tilde{B} by $\tilde{A}(x) = A(x + \tilde{x})$ and $B(x^*) = B(x^*) - \tilde{w}$ where $[\tilde{x}, \tilde{w}] \in BA$. $\tilde{B}\tilde{A}$ is accretive and $[0, 0] \in \tilde{B}\tilde{A}$. Consequently we may assume $[0, 0] \in BA$. Hence for b in $B(x^*)$ and x^* in Ax, $(Jx, b) \ge 0$. This is condition (3') of Remark 1. Condition (2) follows from $R(A) \subset D(B)$. q.e.d.

We now turn to the case where $A=\Im\psi_K$. Suppose K is a closed convex subset of a Banach space, the indicator function ψ_K is defined to be zero on K and ∞ elsewhere. We recall that if f is a lower semicontinuous function from X to $(-\infty, \infty]$, we say w is in $\Im f(x)$ if for all y in X

(6)
$$f(y) \ge (w, y - x) + f(x)$$
,

and ∂f is maximal monotone if f is not identically ∞ . Consequently $\partial \psi_K$ is maximal monotone for K nonempty.

COROLLARY 2: Let X be a Banach space with X and X^* strictly convex and K a closed convex subset of X. For x in X let Px be the nearest point to x on K. Suppose $B: X \to P(X^*)$ is maximal monotone, $P(D(B)) \subset D(B)$, and for y in D(B) there exists b^* in BPy such that

$$(b^*, y - Py) \ge -k (||Py||) ||y - Py||^2 - c (||Py||) d (||y - Py||)$$

where k, c, d are as in Theorem 1. Then $B + \partial \psi_K$ is maximal monotone.

Lemma I: Suppose X a reflexive Banach space with X and X* strictly convex, K a closed convex nonempty subset of X, P the projection taking x to the nearest point on K. Let ψ_K be the indicator function of K and let $\lambda > 0$ be given. Then $(I + \lambda J^{-1} \, \partial \psi_K)^{-1} = P$.

Proof: The Lemma 3.8 of [9] showed $(I + \lambda J^{-1} \partial \psi_K)^{-1} x \supset Px$ for X^* strictly convex, Px being the set of nearest points to x on K. When X is strictly convex the left hand side has only one element, giving equality. q.e.d.

Proof of Corollary 2: By the Lemma $P(D(B)) \subset D(B)$ gives (2) of Theorem 1. For (3), given x in $K \cap D(B)$ and x^* in $\partial \psi_K(x)$, let $y = x + J^{-1}x^*$, and take for y^* of (3) the b^* given in the statement of the corollary. q.e.d.

Theorem 2: Suppose X a reflexive Banach space with X, X* strictly convex. Suppose A: X \rightarrow P(X*) is maximal monotone, $f: X \rightarrow (-\infty, \infty]$ is convex and lower semicontinuous, k, c, d are functions as given in Theorem 1. Suppose that for $[v, a^*]$ in A, $\lambda > 0$

(7)
$$f(v + \lambda J^{-1} a^*) \ge f(v) - \lambda (k(||v||) ||a^*||^2 + c(||v||) d(||a^*||)).$$

Then $\partial f + A$ is maximal monotone.

Proof: By (7) we may take \tilde{x} in D(A) \cap D(f), i.e. $f(\tilde{x}) < \infty$.

Let $\tilde{f}(v) = f(v + \tilde{x})$ and $\tilde{A}(v) = A(v + \tilde{x})$. Then $\partial f(x + \tilde{x}) = \partial \tilde{f}(x)$. Consequently we must show $\tilde{A} + \partial \tilde{f}$ is maximal monotone, or $R(\tilde{A} + \partial \tilde{f} + J) = X^*$, by Browder's Theorem. But $o \in D(\tilde{A}) \cap D(\tilde{f})$, and (7) holds with A and f replaced by \tilde{A} and \tilde{f} . Consequently we may assume $o \in D(f) \cap D(\tilde{A})$. We need to show that $A_{\lambda} x_{\lambda}$ given in (1) is bounded as $\lambda \to o$. Suppose

$$A_{\lambda} x_{\lambda} + \partial f(x_{\lambda}) + J(x_{\lambda}) \ni f^{*}.$$

This means by (6) that for v in X,

(8)
$$f(v) \geq (f^* - A_{\lambda} x_{\lambda} - J x_{\lambda}, v - x_{\lambda}) + f(x_{\lambda}).$$

Letting $v_{\lambda} = (I + \lambda J^{-1}A)^{-1} x_{\lambda}$, in particular

$$f(v_{\lambda}) \geq (f^* - A_{\lambda} x - Jx_{\lambda}, -\lambda J^{-1} A_{\lambda} x_{\lambda}) + f(x_{\lambda}).$$

But by (7),

$$f(v_{\lambda}) \leq f(x_{\lambda}) + \lambda \left(k \left(\|v_{\lambda}\| \right) \|A_{\lambda} x_{\lambda}\|^{2} + c \left(\|v_{\lambda}\| \right) d \left(\|A_{\lambda} x_{\lambda}\| \right) \right).$$

After dividing by \(\lambda\), we have

$$\|\mathbf{A}_{\lambda} x_{\lambda}\|^2 \leq k \left(\|v_{\lambda}\|\right) \|\mathbf{A}_{\lambda} x_{\lambda}\|^2 + c \left(\|v_{\lambda}\|\right) d \left(\|\mathbf{A}_{\lambda} x_{\lambda}\|\right) + \|f^* - \mathbf{J} x_{\lambda}\| \|\mathbf{A}_{\lambda} x_{\lambda}\|,$$

which yields (5).

We now let v = 0 in (8), and obtain

$$||x_{\lambda}||^{2} \le -(A_{\lambda} x_{\lambda}, x_{\lambda}) + ||x_{\lambda}|| ||f^{*}|| + f(0) - f(x_{\lambda})$$

Take $[y, w^*] \in \partial f$. Since $(A_{\lambda} x_{\lambda}, x_{\lambda}) \ge (A_{\lambda} \circ x_{\lambda})$ and $f(x_{\lambda}) \ge (w^*, x_{\lambda} - y) + f(y)$, it follows that

$$||x_{\lambda}||^{2} \le ||x_{\lambda}|| (||f^{*}|| + ||w^{*}|| + ||A_{\lambda}(0)||) + f(0) - f(y) - (w^{*}, y).$$

Since $A_{\lambda}(0)$ are bounded, it follows that x_{λ} are bounded.

As in Theorem 1, v_{λ} are bounded as $\lambda \to 0$, and hence $A_{\lambda} x_{\lambda}$ are bounded. q.e.d.

Remark 2: A special case of (7) is that for x in X and $\lambda > 0$

(7')
$$f((I + \lambda J^{-1} A)^{-1} x) \le f(x).$$

One sees that Theorems 1 and 2 are similar, and if (7) implied (2) and (3) (or more simply (7') implied (2) and (3')) then Theorem 1 would imply Theorem 2. However, this is not true in general, although the converse holds.

Remark 3: Suppose X, A and f are as in Theorem 2, without (7). Suppose for $\lambda > 0$, $(I + \lambda J^{-1}A)^{-1} D(\mathfrak{F}) \subset D(\mathfrak{F})$, and for v in $D(A) \cap D(\mathfrak{F})$ and a^* in Av there exists b^* in $\mathfrak{F}(v)$ such that $(b^*, J^{-1}(a^*)) \geq 0$. Then (7') holds.

Proof: Suppose a^* in Av, $\lambda > 0$, and $v + \lambda J^{-1} a^* = x$. We want to show $f(v) \le f(x)$. If $x \in D(\partial f)$ so does v by assumption, and by (6), for all b^* in $\partial f(v)$, $f(v + \lambda J^{-1} a^*) \ge f(v) + (b^*, \lambda J^{-1} a^*)$. By assumption there exists b^* in $\partial f(v)$ making $(b^*, J^{-1} a^*) \ge 0$, giving $f(v) \le f(x)$.

Suppose now $f(x) < \infty$, we claim there exists $x_n \to x$, $f(x_n) \to f(x)$, $x_n \in D(\partial f)$. This is because if K is the epigraph of f, $K = \{(x, k) \in X \times R : k \ge f(x)\}$ it has supporting hyperplanes in $X \times R$ at a dense subset of the boundary by the Bishop Phelps theorem [2]. Now (x, f(x)) is in the boundary, and the supporting hyperplanes give x_n in $D(\partial f)$ with $x_n \to x$, $f(x_n) \to f(x)$ [14]. Given $\lambda > 0$, $(I + \lambda J^{-1}A)^{-1}x_n$ converges weakly to $(I + \lambda J^{-1}A)^{-1}x$ by Lemma 1.3 (c) of [3]. Since $x_n \in D(\partial f)$, $f((I + \lambda J^{-1}A)^{-1}x_n) \le f(x_n)$. Since f is lower semicontinuous, $f(v) = f((I + \lambda J^{-1}A)^{-1}x) \le \overline{\lim} f((I + \lambda J^{-1}A)^{-1}x_n) \le \overline{\lim} f(x_n) = f(x)$. If $f(x) = \infty$, then $f(v) \le f(x)$. q.e.d.

COROLLARY 1: Suppose X a reflexive Banach space, X, X^* strictly convex, K a closed convex nonempty subset of X. For x in X let Px be the nearest point to x on K. Suppose, with c a function as in Theorem 1, for x in X

$$f(x) \ge f(Px) - c(\|Px\|) (|K - x|^2 + |K - x|)$$

Then $\partial f + \partial \psi_{K}$ is maximal monotone, and equal to $\partial (f + \psi_{K})$.

Proof: By Lemma 1, with $A = \partial \psi_K$, the condition (7) fails but the proof of Theorem 2 gives $\partial f + \partial \psi_K$ maximal monotone. Since $\partial f + \partial \psi_K \subset \partial (f + \psi_K)$ and $\partial (f + \psi_K)$ is monotone, the maximality gives equality. q.e.d.

COROLLARY 2: Suppose X a reflexive Banach space with X, X^* strictly convex, K and P as in Corollary 1, and B another closed convex nonempty subset of X. If $P(B) \subset B$ then $\partial \psi_K + \partial \psi_B = \partial \psi_{B \cap K}$.

Proof: We take $f = \psi_B$ in Corollary 1. $P(B) \subset B$ implies $f(x) \ge f(Px)$. By Corollary 1, $\partial \psi_K + \partial \psi_B$ is maximal monotone, and one sees $\psi_B + \psi_K = \psi_{B \cap K}$ q.e.d.

We will suppose X has uniformly convex dual X^* . Since $A: X \to P(X)$ is accretive iff y in Ax and v in Au implies $(y-v, J(x-u)) \ge 0$ [7], [11], [12], the sum of two accretive operators is accretive.

THEOREM 3: Suppose X a Banach space with X^* uniformly convex. Suppose A and B are m-accretive, and for $\lambda > 0$

(9)
$$(I + \lambda A)^{-1} D(B) \subset D(B).$$

Suppose for v in X there is a neighborhood N(v) of v, a function d such that $r^2/d(r) \to \infty$ when $r \to \infty$, and k in [0, 1]; such that for x in $D(A) \cap D(B) \cap N(v)$ and a in Ax there exists b in Bx such that

(10)
$$(Ja, b) \ge -k ||a||^2 - d(||a||).$$

Then A + B is m-accretive.

Proof. It is enough to alter the proof of [II, Th. IO.2] by taking approximations with A_{λ} instead of B_{λ} . One uses the same calculation as in Theorem I to show that if $A_{\lambda} x_{\lambda} + B x_{\lambda} + x_{\lambda} \ni y$ and $x_{\lambda} \to x_{0}$ as $\lambda \to 0$ then $A_{\lambda} x_{\lambda}$ is bounded, the equivalent of [II, IO.8] where $B_{\lambda} v_{\lambda}$ are shown to be bounded. q.e.d.

REFERENCES

- [1] E. ASPLUND, Averaged norms, «Israel J. Math.», 5, 227-233 (1967).
- [2] E. BISHOP and R. PHELPS, The support functionals of a convex set, « Proc. Symp. Pure Math. », VII, 27–35, «Amer. Math. Soc. », Providence R. I. (1963).
- [3] H. Brezis, M. Crandall and A. Pazy, *Perturbations of nonlinear monotone sets in Banach spaces*, «Comm. Pure App. Math.», 23, 123-144 (1970).
- [4] H. Brezis, Propriétés régularisantes de certains semigroupes nonlinéaires (to appear).
- [5] F. BROWDER, Nonlinear maximal monotone operators in Banach spaces, «Math. Ann.», 175, 89–113 (1968).

- [6] F. BROWDER, Nonlinear variational inequalities and maximal monotone mappings in Banach spaces, «Math. Ann.», 183, 213–231 (1969).
- [7] F. BROWDER, Nonlinear operators and nonlinear equations of evolution in Banach spaces, « Proc. Symp. Pure Math. » 18, part II, «Amer. Math. Soc. », Providence R.I. (to appear).
- [8] F. Browder, IV CIME Session, Varenna, August 1970.
- [9] B. CALVERT, Nonlinear equations of evolution, « Pac. J. Math. » (To appear).
- [10] B. CALVERT and K. GUSTAFSON, Multiplicative perturbation of nonlinear m-accretive operators (to appear).
- [11] T. KATO, Accretive operators and nonlinear evolution equations in Banach spaces, « Symp. Nonlinear Funct. Anal. », A.M.S., Chicago 1968.
- [12] J. MERMIN, Thesis, University of California, Berkeley 1968.
- [13] R. T. ROCKEFELLER, On the maximality of sums of nonlinear monotone operators, « Trans. Amer. Math. Soc. » (to appear).
- [14] R. T. ROCKEFELLER, Convex functions, monotone operators and variational inequalities, Theory and Applications of Monotone operators, NATO conference (1968).