Atti Accademia Nazionale dei Lincei Classe Scienze Fisiche Matematiche Naturali **RENDICONTI**

VASILE ISTRĂŢESCU, ANA ISTRĂŢESCU

On the theory of fixed points for some classes of mappings III

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **49** (1970), n.1-2, p. 43–46. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1970_8_49_1-2_43_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1970.

Analisi funzionale. — On the theory of fixed points for some classes of mappings III. Nota ^(*) di VASILE ISTRĂŢESCU e ANA ISTRĂŢESCU, presentata dal Socio G. SANSONE.

RIASSUNTO. — In questo lavoro si studiano alcune condizioni sufficienti affinché un operatore abbia dei punti uniti; alcuni risultati generalizzano quelli di Rothe e Krasnoselskiĭ.

I. INTRODUCION. Let \mathfrak{X} be a real or complex Banach space and C be a closed bounded set in \mathfrak{X} . If S is a completely continuous mapping of C into C, then according to the Shauder fixed point theorem S has a fixed point in C if C is convex. Using a variational principle, Schauder fixed point theorem was extended for the existence of solutions in certain balls B, of the space \mathfrak{X} for the nonlinear equation of the form

$$T(x) = S(x)$$

where S is completely continuous T is essentially a strongly monotone potential mapping. Another direction of extension of Schauder fixed point theorem was for the existence of fixed points for completely continuous mappings S of B, into \mathfrak{X} which on the boundary ∂B , of B, satisfy the condition

$$\|S(x) - x\|^2 \ge \|Sx\|^2 - \|x\|^2$$

These extensions are due by Rothe [6], Krasnoselskii [5], Altman [1], [2], Kačurovski [4] and Petryschin [7].

The purpose of this Note is to obtain theorems of the above type for the class of densifying operators.

2. Let \mathfrak{X} be a Banach space and E be a bounded set in \mathfrak{X} . We define [3] the Kuratovski number $\alpha(E)$ of E as the infimum of all $\varepsilon > 0$ such that there exists a finite covering of E with balls with radius smaller than ε .

The properties of number $\alpha(\cdot)$ are the following:

- I) $0 \le \alpha(A) \le \text{diameter of } A$.
- 2) $\alpha(A \cup B) \le \max \{\alpha(A), \alpha(B)\}.$
- 3) $\alpha(A) = 0$, iff A is precompact.

(*) Pervenuta all'Accademia il 15 luglio 1970.

Definition 1. An operator T is called densifying if for each bounded set A

$$\alpha$$
 (TA) < (A)

and is called α -contraction if there exists $k \in [0, 1)$ independent of A such that

$$\alpha$$
 (TA) $\leq k\alpha$ (A).

Remarks. It is clear that every completely continuous operator is α -contraction and that every α -contraction is densifying. These classes were considered by Darbo and Sadovski.

A more general class of operators was considered in [9] by

Definition 2. An operator is called locally power densifying, if for each bounded set $A \subset \mathfrak{K}$ there exists an integer n = n (A) such that

 $\alpha\left(\mathrm{T}^{n}\,\mathrm{A}\right)<\alpha\left(\mathrm{A}\right)$

and is called locally power contraction if for each bounded set A there exists n = n (A) and $k \in [0, 1)$ such that α (Tⁿ A) $\leq k\alpha$ (A).

3. GENERALIZATIONS OF SOME FIXED POINT THEOREMS.

The definitions and notations of § 1-2 remain valid. An operator is called demicontinuous if $x_n \to x$ strongly in \mathfrak{K} the $Tx_n \to Tx$ weakly in \mathfrak{K}^* since we consider T to be an operator from \mathfrak{K} to \mathfrak{K}^* .

THEOREM 3.1. Let \mathfrak{X} be a complex reflexive Banach space and $T: \mathfrak{X} \to \mathfrak{X}^*$ be a mapping from \mathfrak{X} to \mathfrak{X}^* such that T is demicontinuous and

$$|\langle \mathrm{T}x - \mathrm{T}y, x - y \rangle| \ge \beta ||x - y||^2$$

for all x, $y \in \mathfrak{X}$ and some constant $\beta > 0$. Let S be an α -contraction such that

(I)
$$\frac{\mathrm{I}}{\beta} (\mathrm{S}x - \mathrm{T}o) \in \{u, u \in \mathfrak{K}^*, \|u\| \le r^*, r^* \le r\}$$

for all $x \in B_r$, r > 0 and α (SE) $< \beta \alpha$ (E).

Then there exists at least one point $x_0 \in B_r$ such that

 $Tx_0 = Sx_0$.

Proof. The proof is similar to proof of theorem 1 in [7] and we give here only modifications in that proof for obtain our theorem.

From hypotheses and Zarantonelo-Browder theorem T^{-1} is well-defined on all \mathfrak{X}^* and the operator $T^{-1}S$ maps B_r into B_r . Also

$$\|\mathbf{T}^{-1}\mathbf{S}\mathbf{y} - \mathbf{T}^{-1}\mathbf{S}\mathbf{z}\| \leq \frac{\mathbf{I}}{\beta} \left(\|\mathbf{S}\mathbf{y} - \mathbf{S}\mathbf{z}\|\right).$$

44

This gives that T^{-1} S is a densifying operator on B_r and since it is continuous we find a fixed point x_0 such that

$$T^{-1}Sx_0 = x_0$$

and the theorem is proved.

Remark. The case when S is completely continuous, is theorem 1 of Petryshin [7]. Also theorem 2 of [7] has a variant in our context and we omit this.

Now, we wish to present some generalizations of classical theorem of Rothe [6], Krasnoselskii [5] and Al'tman [1], [2]. These generalizations are obtained without use of the notion of the degree of a mapping in the sense of Leray-Schauder (see the proof of Petryshin of these theorems [7]).

THEOREM 3.2. If S is a densifying continuous mapping form B, to \mathfrak{X} such that for every $x \in B$,

$$\|x - \mathbf{S}x\|^2 \ge \|\mathbf{S}x\|^2 - \|x\|^2$$

then S has at least one fixed point in B_r for the case \Re is a Hilbert space and S is α -contraction with $k < \frac{1}{2}$ for the case of Banach spaces.

Proof. We define the retraction map of X on B_r

$$\mathbf{R}\boldsymbol{u} = \begin{cases} \boldsymbol{u} & \text{if } \|\boldsymbol{u}\| \leq \boldsymbol{r} \\ \frac{\boldsymbol{r}\boldsymbol{u}}{\|\boldsymbol{u}\|} & \text{if } \|\boldsymbol{u}\| \geq \boldsymbol{r} \end{cases}$$

and consider the mapping $S_1(x) = RSx$ on B_r into B_r . By a the theorem of G. Darbo [3] p. 92, S_1 is a densifying operator and by a theorem of Sadovski [10] we find a fixed point x_0 in B_r , $S_1 x_0 = x_0$. Now, it is clear that x_0 is also a fixed point for S. Indeed since $x_0 \in B_r$, then either $||x_0|| < r$ or $||x_0|| = r$

$$x_{0} = S_{1}x_{0} = RSx_{0} = \begin{cases} Sx_{0} & \text{if } ||Sx_{0}|| \le r \\ r \frac{Sx_{0}}{||Sx_{0}||} & \text{if } ||Sx_{0}|| > r \end{cases}$$

Thus, it is sufficient to discuss the case when $||Sx_0|| \ge r$, i.e. the equation

$$Sx_0 = \lambda_0 x_0 \qquad \lambda_0 = \frac{\|Sx_0\|}{r} \cdot$$

If $||x_0|| < r$ then we obtain clearly a contradiction. Thus remains only the case $||x_0|| = r$ and thus $\lambda_0 \ge 1$. Clearly

$$||x_0||^2 - ||Sx_0||^2 = ||x_0 - \lambda_0 x_0||^2 = (I - \lambda_0)^2 r$$

and

$$\|Sx_0\|^2 - \|x_0\|^2 = (\lambda_0 - I)r$$

Since $\lambda_0 \ge I$, we must have $\lambda_0 = I$ i.e. x_0 is a fixed point for S.

As special cases we obtain some generalizations of theorems proved by Rothe [6] and Krasnoselskii [5].

THEOREM 3.3. If S is a continuous densifying mapping from B, to \mathfrak{X} such that for every $x \in \partial B_r$

 $\|\mathbf{S}x\| \le \|x\|$

then S has at least one fixed point in B_r for \mathfrak{K} a Hilbert space.

THEOREM 3.4. If \mathfrak{X} is a Hilbert space and S be a continuous densifying mapping from B_r to \mathfrak{X} such that for every $x \in \partial B_r$

 $\langle \mathrm{S}x, x \rangle \leq ||x||^2$

thus S has at least one fixed point in B_r .

Remark. The essential role in the application of Darbo's theorem is the relation concerning the retraction R,

$$\|\mathbf{R}\boldsymbol{u}-\mathbf{R}\boldsymbol{u}'\| \leq \|\boldsymbol{u}-\boldsymbol{u}'\|$$

for the case of Hilbert spaces and

$$||Ru - Ru'|| \le 2 ||u - u'||$$

for the case of Banach spaces. Perhaps, the relation $||Ru - Ru'|| \le ||u - u'||$ is valid in general. But the authors are unable to prove this.

References

- M. AL'TMAN, A fixed point theorem in Hilbert space, « Bull. Acad. Polon. Sci. », cl. III, 5, 19-22 (1957).
- [2] M. AL'TMAN, A fixed point theorem in Banach space, "Bull. Acad. Polon. Sci.", cl. III, 5, 89–92 (1957).
- [3] G. DARBO, Punti uniti in trasformazioni a codominio non compatto, «Rend. Sem. Univ. Padova », 84–92 (1955).
- [4] R. KACUROVSKII, On some fixed point principles, «Ucen. Zap. Moskov, reg. Ped. Inst. », 96, 215-219 (1960).
- [5] M. KRASNOSELSKII, New existence theorems for solutions of non linear integral equations, «Dokl. Acad. Nauk. SSSR », 88, 949–952 (1953).
- [6] E. ROTHE, Zur theorie der topologischen ordnung und der vektorfelder in Banaschen Raümen, «Compositio Math.», 5, 177–197 (1937).
- [7] W. V. PETRYSHIN, Remarks on fixed point theorems and their extensions, «Trans. Amer. Math. Soc. », 126 (1), 43-53 (1967).
- [8] E. ZARANTONELO, The closure of the numerical range contains the spectrum, «Bull. Amer. Math. Soc. », 7, 781–787 (1964).
- [9] V. ISTRĂŢESCU and A. ISTRĂŢESCU, On the theory of fixed points for some classes of mappings, I, II, to appear.
- [10] V. SADOSVSKI, On a theorem of fixed points, «Funct. Anal. and applic. », TI (2), 74-77 (1967).