bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Baffoni, Giorgio M.:
Osservazioni comparate su l'accrescimento e lo sviluppo del proencefalo di un Anfibio anuro acquatico (Xenopus laevis Daudin)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Serie 8 45 (1968), fasc. n.1-2, p. 76-83, (Italian)
pdf (853 Kb), djvu (1.27 MB).

Sunto

The forebrain growth and mitotic ratio of an aquatic Anouran and of an Urodelan are correlated, having the peaks at the middle of the larval life and then decreasing, without maintaining the rate during the prometamorphosis as in another Anouran, but terrestrial one (Bufo). The development of the forebrain in Xenopus, has the same features as in Bufo, and this is shown by the migration of the hippocampal cells towards the surface, of the mantle and by the cellular arrangement of the thalamus dorsalis. It can be further noted that the forebrain picture at the end of the metamorphosis is more similar to the full-grown animal in Xenopus than in Bufo. During the telencephalon growth of Xenopus some zones of active proliferation are found in both the rostral and the caudal ends of the lateral ventricles, and along the premetamorphosis in the ventricular layer lining the primordium hippocampi. In the diencephalon of Xenopus the mitotic ratio is higher first in the epithalamic region (during embryonal life), then in the dorsal thalamus (during the premetamorphosis) and finally in the hypothalamic region (during and after the prometamorphosis). The forebrain growth during the embryonal life and premetamorphosis is chiefly realized by proliferative activity, and later it is mostly achieved by cellular differentiation.
Referenze Bibliografiche
[1] G. M. BAFFONI, «Rend. Acc. Naz. Lincei», ser. VIII, 26, 598-603 (1959).
[2] G. M. BAFFONI, «Rend. Acc. Naz. Lincei», ser. VIII, 31, 158-164 (1961).
[3] P. D. NIEUWKOOP e J. FABER, Normal Table of Xenopus Laevis (Daudin), North-Holland Pu. Co., Amsterdam 1967.
[4] A. ROSSI, «Monit. Zool. Ital.», 66, 133-149 (1959).
[5] S. GLUCKSOHN, «Roux' Arch. Entw-mech. Org.», 125, 341-405 (1932).
[6] G. M. BAFFONI, «Riv. Biol.» (Perugia), 53, 293-340 (1960).
[7] G. M. BAFFONI, «Rend. Acc. Naz. Lincei», ser. VIII, 41, 412-418 (1966).
[8] G. M. BAFFONI, «Rend. Acc. Naz. Lincei», ser. VIII, 41, 574-580 (1966).
[9] G. M. BAFFONI, «Rend. Acc. Naz. Lincei», ser. VIII, 43, 118-124 (1967). | fulltext bdim
[10] G. M. BAFFONI, «Rend. Acc. Naz. Lincei», ser. VIII, 43, 608-614 (1967). | fulltext bdim
[11] H. KUHLENBECK, «Anat. Anz.», 54, 304-316 (1921).
[12] G. M. BAFFONI, «Arch. Zool. Ital.», 51, 337-358 (1966).
[13] G. COTRONEI, «Rend. R. Acc. Naz. Lincei», ser. VI, 15, 236-240 (1932).
[14] G. M. BAFFONI, «Acta Med. Romana», 4, 8-14 (1966).
[15] E. CAPANNA, «Rend. Acc. Naz. Lincei», ser. VIII, 31, 498-503 (1961); 32, 258-261 (1962); 35, 621-625 (1963).
[16] P. CLAIRAMBAULT, «Journ. Hirnforsch.», 6, 87-121 (1963); 7, 499-512 (1965); 10, 123-172 (1967).
[17] H. H. HOFFMAN, «Jour. Comp. Neurol.», 120, 317-368 (1963); «Alabama Journ. Med. Sci.», 3, 286-298 (1966).

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali