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Abstract – We present a wide-spectrum overview of some recent developments in the
theory of free boundary minimal surfaces, with special emphasis on the problem of com-
pactness under mild curvature conditions on the ambient manifold.

Riassunto – Presentiamo un ampio resoconto di alcuni sviluppi recenti nella teoria delle
superfici minime a frontiera libera, con particolare riferimento al problema della compat-
tezza sotto deboli ipotesi sulla curvatura sulla varietà ambiente.

1 - INTRODUCTION

Let Σ be a smooth manifold of dimension k ≥ 2, let (X ,g) be a smooth Rie-
mannian manifold of dimension d ≥ 3, and let ϕ : Σ → X be a proper immer-
sion satisfying ϕ(Σ)∩ ∂X = ϕ(∂Σ) (i. e. the boundary of Σ is contained in the
boundary of X , and there is no interior point of ϕ(Σ) touching ∂X): we say that
ϕ : Σ → X is a free boundary minimal immersion if it is a critical point for the
k-dimensional area functional in the category of relative cycles, namely under all
compactly supported variations (ϕt) subject to the constraint that ϕt(∂Σ)⊂ ∂X .
Considering the first-variation formula it is easily seen that this happens if and
only if ϕ(Σ) has zero mean curvature and meets the ambient boundary orthogo-
nally. We shall mostly be interested in the case when the map ϕ is an embedding,
in which case we shall be talking about free boundary minimal submanifolds, and
(with some abuse of language) identify the map in question with its image ϕ(Σ).

Besides the self-evident geometric significance, which can be traced back at
least to Courant [23, 24], free boundary minimal hypersurfaces also naturally
arise in partitioning problems for convex bodies, in capillarity problems for flu-
ids and, as has significantly emerged in recent years, in connection to extremal
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metrics for Steklov eigenvalues for manifolds with boundary (see primarily the
works by Fraser-Schoen [33, 34, 36] and references therein).

A good point to start our discussion is provided by the unit ball in R3: in this
case we have, modulo isometries, two simple examples of free boundary minimal
surfaces. On the one hand, we have flat disks passing through the origin, while
on the other we have the so-called critical catenoids, which are defined as the
only catenoids centered at the origin and meeting the unit sphere orthogonally.
Going beyond these classical examples, and producing free boundary minimal
surfaces of topological type different from that of the disk or the annulus turns
out to be a rather delicate task, that was only accomplished in recent years. In
that respect, we mention the work by Fraser and Schoen [36] (genus zero and any
number of boundary components), by Folha, Pacard and Zolotareva [29] (genus
zero or one and any sufficiently large number of boundary components), by Ke-
tover [50] and Kapouleas and Li [43] (arbitrarily large genus and three boundary
components) and by Kapouleas and Wiygul [44] (arbitrarily large genus and one
boundary component). In higher dimension, namely for Bn ⊂ Rn+1 with n ≥ 4,
infinite families of examples have been found, via equivariant methods, by Frei-
din, Gulian and McGrath [37].

For general Riemannian manifolds, possibly subject to additional curvature
conditions, in addition to older works mostly appealing to the parametric ap-
proach (cf. [23, 24, 30, 38, 47–49, 76, 78] and references therein) we have wit-
nessed the implementation, for relative cyles, of powerful constructions like the
min-max à la Almgren-Pitts or the degree-theoretic approach à la White: in that
respect one should mention the work by Li [51], Li-Zhou [52], De Lellis-Ramic
[25] and Maximo-Nunes-Smith [61]. In fact, there is good reason to believe that
the min-max theory by Marques and Neves (see in part. [45,54,56,58,60]) should
be pushed to the same impressive summits that have been achieved in the closed
case, so to lead to a Weyl law for the (free boundary) volume spectrum, and to
general density and equidistribution results.

Motivated by this variety of existence results, one is naturally lead to investi-
gate some fundamental geometric questions which have to do with (what might
be called) the ensemble of free boundary minimal surfaces inside a given Rie-
mannian manifold (X ,g):

1. When (X ,g) is a space form, can one classify all free boundary minimal
immersions having a pre-assigned topological type (namely: for fixed Σ)?

2. Under what curvature conditions (X ,g) is the class of its free boundary
minimal embeddings having a pre-assigned topological type compact in
the sense of smooth, graphical one-sheeted convergence?

3. Are there universal bounds, only depending on the ambient manifold, re-
lating the topological invariants of any free boundary minimal surface to its
geometric data like e. g. area, spectral invariants, Morse index?

Each of these questions is already highly meaningful in the aforementioned spe-
cial case of the unit ball in R3. To fix the ideas, one could ask, for instance,

whether (1)’ the flat (equatiorial) disks are, in fact, the only contractible free
boundary minimal surfaces in B3, whether (2)’ the space of free boundary mini-
mal surfaces of genus five and three boundary components is strongly compact in
the sense above, and whether (3)’ the Morse index of any free boundary minimal
surface is bounded from above and/or below by a linear function of its relative
first Betti number.

The scope of this article is to describe various recent results related to the
three questions above (and ramifications thereof), informally present some key
ideas that come up in the corresponding proofs, and suggest a few related open
problems.

Acknowledgements: This survey was written on the occasion of the conferral to
its author of the Riccardo De Arcangelis prize in Mathematical Analysis by the
Accademia di Scienze Fisiche e Matematiche of the Società Nazionale di Scienze,
Lettere ed Arti in Napoli. The author is partly supported by the National Science
Foundation (through grant DMS 1638352) and by the Giorgio and Elena Petronio
Fellowship Fund.

2 - TOPOLOGICAL UNIQUENESS RESULTS

The first general problem we wish to discuss has to do with classifying special
geometric objects: when (X ,g) is a simple model space, like e. g. the unit ball
B3 or the hemisphere S3

+ can we produce a complete list of all free boundary
minimal immersions of fixed topological type? Besides the ‘cheap’ results one
can obtain, in very special cases, via reflection methods (hence by reduction to
the complete, or to the compact case), this question turns out to be very subtle.
The first significant result, addressing the most basic of all such problems, was
obtained by J. Nitsche [64] relying on a Hopf differential argument:

Theorem 1. The only free boundary minimal immersions of a disk in the Eu-
clidean unit ball are totally geodesic.

The proof of this statement clearly resembles the one proposed by Almgren in
1966 [3] in the closed setting, in order to prove that the only minimally immersed
two-spheres in the round three-sphere must be equatorial. This correspondence,
i. e. the parallel between the theory of closed minimal surfaces in round S3 and
of free boundary minimal surfaces in B3, turns out to be extremely rich, and
surprisingly inspirational in the development of the subject. Within this frame-
work, a fundamental conjecture was proposed in 2014 by Fraser and Li [32],
to be thought in analogy with the theorem by Brendle [10] classifying the Clif-
ford torus as the only minimally embedded torus in the sphere (as predicted by
Lawson in 1970).

Conjecture 2. The only free boundary minimal embeddings of an annulus in
the Euclidean unit ball are, modulo isometries, reparametrizations of the critical
catenoid.
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This result has very recently been claimed by Nadirashvili and Penskoi [63],
and is currently under scrutiny. Although there are some serious concerns about
the correctness of the proposed argument, it is interesting to remark that the au-
thors show how confirming this conjecture would allow to prove a classification
result for overdetermined elliptic boundary value problems on spherical domains,
namely to determine all couples (Ω,v) for Ω ⊂ S2 a smooth simply-connected
domain and v a smooth function solving a problem of the form

⎧⎨
⎩

Δv =−λv in Ω,

v = α on ∂Ω,

|∇v|= β on ∂Ω

for constants λ ,α,β ∈ R. A similar result for scaling-invariant domains in R3

and degree one homogeneous functions, related to earlier work by Caffarelli,
Jerison and Kenig [12], would also follow.

A different task concerns, instead, the generalization of Nitsche’s theorem to
higher dimension and/or codimension. If we stick to k = 2 (notation as in the
Introduction) but allow for any d ≥ 3, the question has been very satisfactorily
addressed in yet another contribution by Fraser and Schoen [35]: the only free
boundary minimal immersions of a disk in the Euclidean unit n-dimensional ball
are totally geodesic.

This may sound like a very plausible and expected statement, but it is quite
remarkable that, on the other hand, for any d ≥ 4 there is plenty of non-trivial
minimal immersions ϕ : S2 → Sd (see Calabi [13]). Thereby, we face an interest-
ing broken symmetry with respect to the parallelism described above.
Remark 3. In B4 there are free boundary minimally embedded Möbius bands,
hence free boundary minimally immersed annuli. Thus the conclusion of the
conjecture above cannot possibly hold in higher codimension (at least not without
additional assumptions).
Remark 4. The uniqueness results above, for disk-type free boundary minimal
surfaces, actually holds true in the larger category of branched free boundary
minimal immersions.

On the other hand, in the codimension one case i. e. if we take k = d − 1
and let d ≥ 4 then the uniqueness problem for free boundary minimal immer-
sions of simply-connected domains is completely open. Based on the analogy
with the closed case, and specifically on the (abundant) existence of minimal hy-
perspheres in round S4 that are not totally geodesic [41, 42], we are inclined to
believe that rigidity should not hold. More precisely, there may be a chance of
suitably desingularizing the cone, centered at the origin, over a non-equatorial
minimal (d − 2)-dimensional minimal hyperpshere in Sd−1 to obtain a smooth
free boundary minimal disk with the desired properties, at least for certain val-
ues of the integer d.
Remark 5. For an extension of Theorem 1 to the case of capillary surfaces, i. e.
surfaces with constant mean curvature and a constant contact angle (not neces-
sarily π/2) the reader may wish to consult Ros and Souam [70].

Remark 6. We still do not know whether for any (topological type of) compact
surface with boundary Σ there exists a minimal immersion ϕ : Σ → B3. This is an
interesting and challenging gap in the existence theory. For instance, it would be
good to know whether there exist examples of free boundary minimal surfaces in
B3 with one boundary component and positive, but low genus.

3 - COMPACTNESS RESULTS

As a straightforward consequence of the classification result presented in the
previous section, we notice that in B3 the space of free boundary minimal disks
is parametrized by a group of isometries (in fact by SO(3)) and, therefore, is
compact with respect to the appropriate notion of convergence. The purpose
of this section is to study such a problem in general Riemannian domains, where
classification results cannot be expected. For the sake of simplicity and notational
convenience, we will now restrict to free boundary minimal embeddings and
work in codimension one.

Generalizing to the free boundary setting a foundational result by Choi and
Schoen, Fraser and Li proved the following theorem:

Theorem 7. [32] If (X ,g) is a compact three-dimensional Riemannian manifold
of non-negative Ricci curvature and convex boundary, then the space

Mγ,ρ = {Σ ∈M(X) : genus(Σ) = γ,#boundary components(Σ) = ρ}
is strongly compact, in the sense of subsequential smooth graphical convergence
with unit multiplicity.

In higher dimension, a conclusion of type cannot possibly hold because of the
following two classes of counterexamples:

i) Given m,n ≥ 2 such that m+ n < 8, by work of Freidin-Gulian-McGrath
[37], there exists an infinite family of distinct, free boundary minimal hy-
persurfaces in the Euclidean unit ball of dimension m+ n, all having the
topological type of Dm ×Sn−1 and converging (in the sense of varifolds) to
a singular limit.

ii) The ‘second principal family’ constructed by Hsiang in 1983 provides in-
finite examples of free boundary minimal hypersurfaces all with the same
topology (namely that of D2 ×S1) inside the upper hemisphere S4

+, but the
limit of these hypersurfaces is singular.

Therefore, we have counterexamples both in the case when either the Ricci tensor
vanishes on the interior and the boundary is strictly convex, or the Ricci tensor
is positive on the interior and the boundary is weakly convex. This evidence
being provided, our idea (which goes back to [74] and [6]) was to approach the
compactness problem from a somewhat different perspective, with less emphasis
on the topological type and more on analytic bounds.
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In order to introduce the fundamental notion of Morse index of a free bound-
ary minimal hypersurface, let us consider a normal section v ∈ Γ(NΣ) and com-
pute the second variation of the area functional:

QΣ(v,v) : =
∫

Σ

(
|∇⊥v|2 − (RicX(v,v)+ |A|2|v|2)

)
+

∫

∂Σ
II∂X(v,v)

=−
∫

Σ
g(v,LΣ(v))+

∫

∂Σ

(
g(v,∇⊥

τ v)+ II∂X(v,v)
)

for LΣv := Δ⊥
Σ v+Ric⊥X (v, ·)+ |A|2v. If we consider the eigenvalue problem

{
LΣ(v)+λv = 0 on Σ,
∇⊥

τ v =−(II∂X(v, ·))� on ∂Σ.
(∗)

standard analytic results ensure the existence of a discrete spectrum: we have
a complete basis of L2 normal sections, say

{
v j
}

, and an associated sequence{
λ j
}

with λ j →+∞ solving (∗). Thereby, one defines the Morse index of Σ as

index(Σ) = #
{

λ j eigenvalue : λ j < 0
}
,

and the Morse nullity as

nullity(Σ) = #
{

λ j eigenvalue : λ j = 0
}
.

We shall say that Σ is stable if it has zero Morse index, and is unstable otherwise.
These definitions being given, one can informally rephrase the argument by

Fraser-Li as follows: on the one hand a bound on the topology implies a uniform
area bound, hence a weak form of convergence (as encoded in the context of
Geometric Measure Theory), while on the other hand a bound on the topology
implies a uniform bound on the Morse index, hence a subsequential convergence
in the sense of laminations (cf. Colding-Minicozzi [22]). Roughly speaking,
the combination of the two things allows to gain convergence to a smooth, free
boundary minimal hypersurface, in the sense of smooth graphical convergence
(possibly with multiplicity) away from finitely many points where necks may
form, and whose number is controlled by the (uniform) index bound in question.
This form of subsequential convergence for classes of the form

Mp(Λ,μ) := {Σ ∈M(X) : λp(Σ)≥−μ and H n(Σ)≤ Λ}.
(which include, as a special case, sets of free boundary minimal hypersurfaces
with uniformly bounded area and index) is the content of Theorem 2 and Theo-
rem 5 in [8]. A fundamental point of our analysis was then the construction of
Jacobi fields for the limit object, which in fact have a sign in the case when the
limit is two-sided (i. e. when it has trivial normal bundle) and convergence hap-
pens with multiplicity m ≥ 2. As a result of our study, we obtained the following
strong compactness theorem:

Theorem 8. Let 2 ≤ n ≤ 6 and (Xn+1,g) a compact Riemannian manifold satis-
fying either of the following two assumptions

1. RicX ≥ 0 with ∂X strictly convex, or

2. RicX > 0 with ∂X weakly convex and strictly mean convex.

Then the corresponding class Mp(Λ,μ) is sequentially compact for geomet-
ric convergence and thus Mp(Λ,μ) consists of finitely many diffeomorphisms
classes.

Here and below, we have employed the convenient phrase ‘geometric conver-
gence’ to refer to smooth, graphical convergence with multiplicity one.

In the so-called bumpy case, by which we mean that all free boundary mini-
mal hypersurfaces (in the given ambient manifold (X ,g)) do not have non-trivial
Jacobi fields and the same is true for any finite covering thereof, one actually gets
a much stronger finiteness result:

Theorem 9. Let 2 ≤ n ≤ 6 and (Xn+1,g) a compact Riemannian manifold such
that ∂X is stricly mean convex. Suppose that for all Σ ∈M(X) and Σ̃ ∈ M̃(X)

there exist no non-trivial Jacobi fields over Σ or Σ̃. Then |Mp(Λ,μ)|< ∞.

Remark 10. This fact has a very interesting consequence: in the setting above
the whole class M(X) of free boundary minimal hypersurfaces is countable. The
corresponding assertion in the closed case (which follows from [6, 74]) plays a
key role in the proof of the density theorem in [45], which first settled Yau’s 1982
conjecture in the generic case.

Obviously, this result poses the problem of understanding how restrictive the
non-degeneracy assumption actually is. This is the object of the following bumpy
metric theorem in the free boundary context:

Theorem 11. Let Xn+1 be a smooth, compact, connected manifold with non-
empty boundary, and q denote a positive integer ≥ 3, or ∞.

Let Bq be the subset of metrics g in Γq defined by the following property:
no compact smooth manifolds with boundary that are Cq properly embedded as
free boundary minimal hypersurfaces in (X ,g), and no finite covers of any such
hypersurface, admit a non-trivial Jacobi field. Then Bq is a comeagre subset of
Γq.

The statement above is the free boundary counterpart of the bumpy metric
theorem obtained by B. White in 1991 (for finite q) and in 2015 (for q = ∞). In
simple terms, this theorem ensures that the notion of bumpyness given above is
indeed generic in a set-theoretic sense (cf. Baire’s category theorem).
Remark 12. B. White also proved, see [79] that if ∂X is mean convex then:
X contains no closed smooth and embedded minimal hypersurface if and only if
there exists some C =C(X) such that for all free boundary minimal hypersurfaces
Σ it holds that

H n(Σ)≤CH n−1(∂Σ).
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In order to introduce the fundamental notion of Morse index of a free bound-
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∫
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∫
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∫
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(
g(v,∇⊥

τ v)+ II∂X(v,v)
)
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∇⊥
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(∗)
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}
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}
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Motivated by this result, one can define

M∂
p(Λ,μ) := {Σ ∈M(X) : λp(Σ)≥−μ and H n−1(∂Σ)≤ Λ}.

If 2 ≤ n ≤ 6 and (Xn+1,g) is a compact Riemannian manifold with mean convex
boundary and contains no closed minimal hypersurface, then Theorem 8 and
Theorem 9 hold for the class M∂

p(Λ,μ) as well (hence also under a uniform
index bound together with a uniform bound on the boundary mass).

4 - BUBBLING ANALYSIS AND QUANTIZATION

If one weakens the curvature condition that the Ricci curvature be positive,
the conclusion of the compactness theorem by Choi-Schoen [19] is no longer
true: indeed, Colding and De Lellis have constructed in [21] examples of three-
dimensional manifolds (of positive scalar curvature) containing sequences of
closed minimal surfaces of any pre-assigned fixed genus but arbitrarily large
Morse index (and with a lamination limit). Although not yet in the literature,
there is little doubt that a similar phenomenon (i. e. a similar lack of compact-
ness, in spite of fixing the topological type) holds in the free boundary case as
well: thus one cannot expect an unconditional result to hold. In this section, we
will instead describe how conditional compactness results can be recovered, and
how degenerations can be understood and described.

Embracing the same perspective as in the previous section, let us consider in
a compact (X3,g) a sequence of free boundary minimal surfaces with uniform
bounds on the area and the Morse index (the topological type will come later
into play). We already described how, at this level of generality (and without any
curvature condition assumption) the sequence in question will subsequentially
converge to a smooth limit, the convergence being smooth and graphical (with
integer multiplicity m ≥ 1) away from finitely many points where necks may
form. The simplest local model to keep in mind is provided by the homothetic
rescalings of a catenoid in R3 (in the free boundary case other basic examples
are given by free boundary half-catenoids, either vertically or horizontally cut).

The way to proceed, and refine the global analysis described in the previous
section, is to get a precise, qualitative and quantitative, understanding of what
happens during the convergence process near the points where curvature concen-
tration occurs. This has been done in [5] (which follows the study of the closed
case, that was previously done in [4, 11]). The first result there is a quantization
identity for the total curvature functional A (·), the integral of the n-th power of
the length of the second fundamental form.

Theorem 13. Let 2 ≤ n ≤ 6 and (Xn+1,g) be a compact Riemannian manifold
with strictly mean convex boundary. For fixed Λ,μ ∈R≥0 and p ∈N≥1, suppose
that {Σk} is a sequence in Mp(Λ,μ). Then there exist a Σ ∈Mp(Λ,μ), m ∈ N
and a finite set Y ⊂ X with cardinality |Y | ≤ p−1 such that, up to subsequence,
Σk → Σ locally smoothly and graphically on Σ\Y with multiplicity m. Moreover
there exists a finite number of non-trivial bubbles or half-bubbles {Γ j}J

j=1 with

J ≤ p−1 and

A (Σk)→ mA (Σ)+
J

∑
j=1

A (Γ j), (k → ∞).

For k sufficiently large, the hypersurfaces Σk of this subsequence are all diffeo-
morphic to one another (hence the class Mp(Λ,μ) is finite modulo diffeomor-
phisms).

Remark 14. The statement above is somewhat less general than what we proved
in [5]: the assumption that the boundary of the ambient manifold be strictly
mean convex is un-necessary, but avoids a digression on possibly improper limit
surfaces.

Theorem 13 has a few straightforward geometric implications, which we
present here as a list of remarks:

• In ambient dimension three (corresponding to n = 2), the total curvature
of any bubble is an integer multiple of 8π (cf. [65, 66]) and thus the total
curvature of any half-bubble is an integer multiple of 4π: hence Theorem
13 implies that for a sequence of surfaces that eventually satisfy A (Σk)≤
4π −δ for some δ > 0, the set Y must be empty and the convergence to Σ
is smooth and graphical everywhere (but possibly with higher multiplicity,
which however will not happen if the limit is two-sided);

• In the very setting of the theorem, there exist:

– a constant C = C(p,Λ,μ,X ,g) such that the total curvature of any
element in Mp(Λ,μ) is bounded from above by C.

– a constant I = I(p,Λ,μ,X ,g) such that the Morse index of any element
in Mp(Λ,μ) is bounded from above by I.

The very last assertion in Theorem 13, about the unconditional finiteness of
the diffeomorphisms types represented in Mp(Λ,μ) is justified by the following
fine local description result:

Theorem 15. With the setup as in Theorem 13, for each y ∈ Y there exist a
finite number of point-scale sequences {(pi

k,r
i
k)}

Jy
i=1 where ∑y∈Y Jy ≤ p−1 with

Σk � pi
k → y, ri

k → 0, and finite numbers of non-trivial bubbles and half-bubbles
{Γi}Jy

i=1, such that the following is true.

• For all i �= j, we have

ri
k

r j
k

+
r j

k

ri
k
+

distg(pi
k, p j

k)

ri
k + r j

k

→ ∞.

Taking normal coordinates centered at pi
k, then Σ̃i

k := Σk
ri
k

converges lo-

cally smoothly and graphically, away from the origin, to a disjoint union of
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13 implies that for a sequence of surfaces that eventually satisfy A (Σk)≤
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The very last assertion in Theorem 13, about the unconditional finiteness of
the diffeomorphisms types represented in Mp(Λ,μ) is justified by the following
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finite number of point-scale sequences {(pi

k,r
i
k)}

Jy
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finitely many (half-)hyperplanes and at least one non-trivial bubble or half-
bubble. The convergence to any non-trivial component of the limit occurs
with multiplicity one.

• Given any other sequence Σk � qk and ρk → 0 with qk → y and

min
i=1,...Jy

(ρk

ri
k
+

ri
k

ρk
+

distg(qk, pi
k)

ρk + ri
k

)
→ ∞

then taking normal coordinates at qk, we obtain that Σ̂k := Σk
ρk

converges to
a collection of parallel (half-)hyperplanes.

When n = 2, any blow-up limit of Σ̃i
k is always connected. The convergence is

locally smooth, and of multiplicity one. Moreover we always have

(†)
distg(pi

k, p j
k)

ri
k + r j

k

→ ∞.

Notice that condition (†) ensures that one can separate the bubble regions, so
that in a certain sense there is no interaction between different regions of high
curvature.

Let us focus on the case of ambient dimension three: in that case, one can rely
on the Gauss-Bonnet theorem, and on the varifold convergence of the boundaries
to rewrite the quantization identity in the form

χ(Σk) = mχ(Σ)+
J

∑
j=1

(χ(Γ j)−b j),

where χ(Γ j) denotes the Euler characteristic of Γ j and b j denotes the number of
its ends.

Let us now see a simple application of this machinery. Since one can fully
classify bubbles and half-bubbles of Morse index less than two, we were able to
obtain novel geometric convergence results for sequences of free boundary min-
imal surfaces of low index. To shorten the statement it is convenient to introduce
the following notation:

M(Λ, I) := {Σ ∈M(X) : index(Σ)≤ I and H n(Σ)≤ Λ}.
Theorem 16. Let (X3,g) be a compact Riemannian manifold, with non-empty
boundary ∂X. Assume that:

a) either the scalar curvature of (X ,g) is positive and ∂X is mean convex with
no minimal component;

b) or the scalar curvature of (X ,g) is non-negative and ∂X is strictly mean
convex.

Then, for any Λ > 0 the following assertions hold:

1. The class M(Λ,0) is sequentially compact in the sense of smooth multiplic-
ity one convergence. Similarly, any subclass of M(Λ,1) of fixed topological
type is sequentially compact, in the sense of smooth multiplicity one con-
vergence, for all given topological types except those of the disk and of the
annulus. In particular, we obtain unconditional sequential compactness for
any class of non-orientable surfaces of given topological type.

2. Let {Σk} be a sequence of disks (respectively: annuli) in M(Λ,1). Then:
either a subsequence converges smoothly, with multiplicity one, to an em-
bedded minimal disk (respectively: annulus) of index at most one or there
exists a subsequence converging smoothly, with multiplicity two and ex-
actly one vertically cut catenoidal half-bubble (respectively: exactly one
catenoidal bubble), to a properly embedded, free boundary stable minimal
disk. As a result, if X contains no stable, embedded, minimal disks then
strong compactness holds.

All conclusions still hold true without assuming any a priori upper area bound
if X is simply connected and, in case b), if moreover there is no closed minimal
surface in X.

Remark 17. It would be interesting to know if the degenerations listed above
actually occur, i. e. to provide a construction of degenerating disks or annuli
of Morse index one (and uniformly bounded) area with a point of bad con-
vergence. There is a chance this may be achieved via a (rather subtle) glu-
ing/desingularization scheme.

We refer the reader to [5] for a list of other interesting applications of the
quantization identity.

5 - ESTIMATES INVOLVING THE MORSE INDEX

An interesting aspect of our analysis of the limit behaviour of sequences of
index one free boundary minimal surfaces (Theorem 16) is that, in many inter-
esting cases, an a priori area estimate is not needed for one can prove it using
a variation of the Hersch trick. In fact, one gets an effective estimate: if we set
ρ := infR and σ := infH, both assumed to be non-negative numbers, then any
index one, orientable free boundary minimal surface Σ satisfies

ρ
2

H 2(Σ)+σH 1(∂Σ)≤ 2π(8−#boundary components(Σ))≤ 16π.

An estimate of this type is not known for surfaces of higher index, i. e. for free
boundary minimal surfaces whose Morse index is bounded from above by a given
integer k. Nevertheless, an ineffective estimate can be proven via refined surgery
techniques following the work by Chodosh-Ketover-Maximo for the closed case
[17]. These results, and their applications, are the object of a forthcoming article
by the author and Franz. However, such a priori area estimate are only one
of the two key ingredient needed to extend Theorem 16 to the case of higher
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index. The second one, which compensates for a lack of classification results
for bubbles of index ≥ 4, is a general index-topology inequality for complete
minimal surfaces in R3 due to Chodosh-Maximo [18]. Their work fits in a very
active area of research, which we shall now briefly describe with special focus
on the free boundary setting. We will present a network of results in this spirit,
which fit in a general program of the author of comparing different notions of
complexity for minimal submanifolds.

Except in very few, special circumstances (including the critical catenoid,
see [26, 62, 75]) the Morse index of a free boundary minimal hypersurface is un-
likely to be computable, or even to be effectively estimated. Thus, it is of some
importance to develop more general methods to bound it, from above and/or from
below, in terms of other data of the surface in question, like e. g. its topology. We
shall describe the topology of a manifold with boundary by means of its (real)
homology groups. As it is well-known, in the most basic case of orientable sur-
faces with boundary the topological type can be completely described by means
of two numbers, namely the genus and the number of boundary components of
the surface in question.

There are some general results about the geometry and topology of stable and
index one compact free boundary minimal surfaces in general three-manifolds
whose boundary satisfies some convexity assumption. For example, by a vari-
ation of the Schoen-Yau rearrangement trick it is known that stable compact
two-sided free boundary minimal surfaces in mean convex domains of three-
manifolds with non-negative scalar curvature must be topological disks or to-
tally geodesic annuli. Moving one step further, Cheng, Fraser and Pang showed
in [16] that there exists an explicit upper bound on the genus and the number of
boundary components of index one compact two-sided free boundary minimal
surfaces in such manifolds. Related results about the topology of free boundary
volume-preserving stable CMC surfaces in strictly mean convex domains of the
three-dimensional Euclidean space were obtained by Ros in [69]. Going beyond
the low index regime, but adding suitable curvature assumptions on the ambient
manifold, in [9] we obtained general linear inequalities for the Morse index. For
the sake of simplicity, anad to avoid an unnecessary digression on the methods
we had introduced in [8] for the closed case, we shall simply stick to the special
case of compact, regular domains in R3.

Theorem 18. Let Ωn+1 be a strictly mean convex domain of the (n+1)-dimensional
Euclidean space, n≥ 2. Let Σn be a compact, orientable, properly embedded free
boundary minimal hypersurface in Ω. Then

index(Σ)≥ 2
n(n+1)

dimH1(Σ,∂Σ;R).

The dimension of the homology group H1(Σ,∂Σ;R) can be explicitly com-
puted in terms of the homology groups of Σ and ∂Σ. In particular, we can obtain
an estimate for the index in terms of the number of boundary components. Fur-
thermore, in the special case of free boundary minimal surfaces (n = 2), the

estimate also involves the genus of the surface and can in fact be upgraded to the
more general scenario when the ambient domain is only weakly mean convex.
This requires an ad hoc argument, and relies on a result of Ros [68].

Theorem 19. Let Ω3 be a mean convex domain of the three-dimensional Eu-
clidean space. Let Σ2 be a compact, orientable, properly embedded free bound-
ary minimal surface in Ω with genus γ and ρ ≥ 1 boundary components. Then

index(Σ)≥ 1
3
(2γ +ρ −1).

The conclusion of this theorem coincide with the one obtained by Ros and
Vergasta [71] in the special case of index one free boundary minimal surfaces in
strictly convex domains of R3 (which contain no stable free boundary minimal
surfaces).
Remark 20. In the case of the unit ball in R3, one should be able to improve
the estimate above in analogy with Theorem 1.3 in [72], concerning the index
of closed minimal surfaces in the round three-dimensional sphere. In terms of
absolute lower bounds (i. e. estimates not brining topology into play) Fraser and
Schoen [36] have proven that if Σn ⊂ Bn+1 (a free boundary minimal hypersur-
face in the unit ball of Rn+1) then either Σn is a flat disk (whose index is one) or
its Morse index is at least n+2.
Remark 21. The above theorem can be used to understand the behaviour of the
index of some known examples of free boundary minimal surfaces constructed
in the unit ball in R3. In particular, it implies that the examples in any of the
families of free boundary minimal surfaces obtained in [36], [29], [43] and [44]
have arbitrarily large Morse indices.
Remark 22. All the main results in [5] actually hold for properly immersed free
boundary minimal hypersurfaces. The necessary modifications to our proofs are
of purely notational character.
Remark 23. For (strictly) two-convex domains of the Euclidean space one can
actually improve the estimate in Theorem 18 replacing, in the right-hand side,
dimH1(Σ,∂Σ;R) by means of max{dimH1(Σ,∂Σ;R), dimHn−1(Σ,∂Σ;R)}.

The ideas behind the proof of Theorem 18 (hence Theorem 19) have their
roots in earlier work by Ros [68], Savo [72] and, as mentioned above, by Am-
brozio, Sharp and the author [8] in the study of a well-known conjecture by
Schoen on the index of closed minimal hypersurfaces inside three-dimensional
manifolds of positive Ricci curvature. Let us explain it, very briefly, in the sim-
pler case of Theorem 19.

Roughly speaking, given a harmonic one-form ω ∈ H 1
T (Σ,g) subject to suit-

able boundary conditions, one considers its projections with respect to some or-
thonormal basis {θi} of R3 and proves, via a direct calculation, an identity for
the mean value ∑QΣ(ui,ui) where QΣ is the Jacobi form arising in the second
variation of the area of Σ and ui = �ω,θi�. Thereby, the geometric assumption
that the domain be strictly mean convex ensures that this sum must be negative.
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Now, let us assume that Σ2 has index k, and denote by {φq}∞
q=1 an L2-orthonormal

basis of eigenfunctions of the Jacobi operator of Σ satisfying the Robin boundary
conditions (∗) (see Section ). Let then Φ denote the linear map defined by

Φ : H 1
T (Σ,g) → R3k

ω �→ [
∫

Σ�ω,θi�φq] ,

where q varies from 1 to k. Clearly, by linear algebra

dimH 1
T (M,g)≤ dimKer(Φ)+3k

Since H 1
T (Σ,g)�H1(Σ,∂Σ;R), and thus both spaces have dimension 2γ+ρ−1,

the result will follow once we prove injectivity of the map Φ.
Let then ω be an element of the kernel of the map Φ. This means that all

functions ui are orthogonal to the first k eigenfunctions, namely φ1, . . . ,φk. Since
index(Σ) = k, we must have

Q(ui,ui)≥ λk+1

∫

Σ
u2

i dH 2 ≥ 0, for i = 1,2,3,

by the variational characterization of the eigenvalues for problem (∗). On the
other hand, we have already observed that the assumption H∂Ω > 0 implies that
the above inequality can only possibly hold if |ω| vanishes identically on ∂M.
But then ω = 0 on Σ by suitably applying the maximum principle. Hence, if the
domain is strictly mean convex, Φ has trivial kernel, and the conclusion follows.

General estimates of the type above are not known in higher codimension, or
under weaker curvature assumptions. However, we remark that some interesting
results on the index of free boundary minimal submanifolds of higher codimen-
sion have been proven in [31] and [36], Theorem 3.1.

Besides the index estimates provided above, we further know, thanks to recent
work [53] by V. Lima, extending to the free boundary setting the results by Eijiri-
Micallef [28] and Cheng-Tysk [15], that a uniform bound both on the area and on
the topology of a sequence of orientable free boundary minimal surfaces implies
a uniform bound on the Morse index. We note that when n = 2 and one considers
convex domains in Euclidean space the theorem by V. Lima can be regarded as a
partial converse to Theorem 19 above.

Lastly, let us mention some very recent work by Aiex and Hong [1] presenting
index estimates in the spirit of [8, 9] for constant mean curvature surfaces in
three-dimensional manifolds, both in the closed and in the free boundary case
(see [14] for earlier contributions in the case of mean convex domains in R3).
Of course, in the stable case these estimates recover much more basic results
concerning the topology of isoperimetric surfaces in Euclidean bodies.
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