RENDICONTO DELL'ACCADEMIA delle Scienze Fisiche e Matematiche

Francesca Angrisani, Giacomo Ascione A Note on VLO Functions
Rendiconto dell'Accademia delle Scienze Fisiche e Matematiche, Serie 4, Vol. 85 (2018), n.1, p. 177-183.
Società Nazione di Scienze, Lettere e Arti in Napoli; Giannini
http://www.bdim.eu/item?id=RASFMN_2018_4_85_1_177_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Rendiconto dell'Accademia delle Scienze Fisiche e Matematiche, Società Nazione di Scienze, Lettere e Arti in Napoli; Giannini, 2018.

A Note on $V L O$ Functions

Nota di Francesca Angrisani e Giacomo Ascione ${ }^{1}$

Presentata dal socio Carlo Sbordone
(Adunanza del 16 Novembre 2018)

Key words: BLO, VLO, norm-attaining.
Abstract - Inspired by a result from Leibov, we find that the supremum defining the $B L O$ norm in $[0,1]$ is actually attained by a specific sub-interval of $[0,1]$ for $f \in V L O([0,1])$

Riassunto - Ispirati da un risultato di Leibov, proviamo che l'estremo superiore che definisce la norma $B L O$ in $[0,1]$ è in realtà assunto da uno specifico sottointervallo di $[0,1]$ nel caso di una funzione $f \in \operatorname{VLO}([0,1])$

1 - INTRODUCTION

Definition 1. A real valued locally integrable function $f(x) \in L_{l o c}^{1}([0,1])$ is said to have Bounded Mean Oscillation $(f(x) \in B M O([0,1]))$ if:

$$
\begin{equation*}
\sup _{I} f_{I}\left|f(x)-f_{I}\right| d x=\|f\|_{B M O}<\infty \tag{1}
\end{equation*}
$$

where f_{I} denotes $f_{I} f(x) d x$ and I spans the set of all compact intervals contained in $[0,1]$.

One can prove that $B M O$ is a vector space and, modulo the set of functions that are almost everywhere equal to a constant, $\|\cdot\|_{B M O}$ defines a norm on it. This space was introduced in (John and Nirenberg, 1961).

Definition 2. A $B M O$ function $f(x)$ is said to have Vanishing Mean Oscillation $(f \in \operatorname{VMO}([0,1]))$ if it also satisfies:

$$
\begin{equation*}
\limsup _{|I| \rightarrow 0} f_{I}\left|f(x)-f_{I}\right| d x=0 \tag{2}
\end{equation*}
$$

[^0]In particular, in (Leibov, 1990), Leibov was able to prove that
Lemma 1. If $f \in \operatorname{VMO}([0,1])$ then there exists an interval $I^{*} \subseteq[0,1]$ such that

$$
\begin{equation*}
\|f\|_{B M O}=f_{I^{*}}\left|f-f_{I^{*}}\right| d t \tag{3}
\end{equation*}
$$

The aim of the paper is to find an analogue of this result in the subclass of $B L O$-functions (see Section 2 for the definition).
To do so, it will be convenient to introduce some notation.
We will refer to an interval in terms of its center x and half-lenght h as in:

$$
I_{h}^{x}:=[x-h, x+h] .
$$

Let us fix $h \in\left(0, \frac{1}{2}\right]$ and define $S_{h}=[h, 1-h]$: we have that $I_{h}^{x} \subseteq[0,1]$ if and only if $x \in S_{h}$. Thus we can define the set

$$
\begin{equation*}
T=\left\{(x, h) \in \mathbb{R}^{2}: h \in\left(0, \frac{1}{2}\right], x \in S_{h}\right\} \tag{4}
\end{equation*}
$$

such that $I_{h}^{x} \subseteq[0,1]$ if and only if $(x, h) \in T$.
Finally, for a generic function $f \in B M O([0,1])$, let us define the function $F: T \rightarrow$ \mathbb{R} given by

$$
\begin{equation*}
F(x, h)=f_{I_{h}^{x}}\left|f-f_{I_{h}^{x}}\right| d t \tag{5}
\end{equation*}
$$

which is always a continuous function since $f \in L^{1}([0,1])$. Thus the norm on $B M O([0,1])$ can be also defined as:

$$
\begin{equation*}
\|f\|_{B M O}=\sup _{(x, h) \in T} F(x, h) . \tag{6}
\end{equation*}
$$

We can also restate the $V M O$ property in terms of F. We have that:

$$
\begin{equation*}
f \in V M O \Longleftrightarrow \lim _{h \rightarrow 0} \sup _{x \in S_{h}} F(x, h)=0 \tag{7}
\end{equation*}
$$

that is to say that F converges to 0 as $h \rightarrow 0$ uniformly with respect to x.
The idea of the proof of the lemma by Leibov is to notice that F is continuous, and since f is in $V M O$, it can be extended by continuity to the closure of T, namely:

$$
\begin{equation*}
\tilde{T}=\left\{(x, h) \in \mathbb{R}^{2}: h \in\left[0, \frac{1}{2}\right], x \in S_{h}\right\} \tag{8}
\end{equation*}
$$

by posing $F=0$ on $[0,1] \times 0$.
A straightforward application of Weierstrass theorem concludes the proof. In particular three main ingredients emerge:

- The compactness of \widetilde{T};
- The continuity of F on T;
- The fact that if $f \in \operatorname{VMO}([0,1])$ then F can be extended with continuity of the whole \widetilde{T}.

In order to mimic this proof and obtain the same result for functions in $V L O([0,1])$ with respect to the norm in $B L O([0,1])$ we will need to write the norm of a function f in such space in terms of a suitable two variables function F and then assure this three hypotheses. We will see that even the second one is not necessarily satisfied by functions in $B L O([0,1]) \backslash V L O([0,1])$.

2 - THE SPACES $B L O([0,1])$ AND $V L O([0,1])$
The following is a definition by R.Coifman and R.Rochberg.
Definition 3. A real valued locally integrable function $f(x) \in L_{l o c}^{1}(\mathbb{R})$ is said to have Bounded Lower Oscillation $(f(x) \in B L O(\mathbb{R}))$ if

$$
\begin{equation*}
\sup _{I} f_{I}\left[f(x)-\inf _{I} f\right] d x=\sup _{I}\left[f_{I}-\inf _{I} f\right]=\|f\|_{B L O}<\infty . \tag{9}
\end{equation*}
$$

Here and throughout the rest of this paper, we are using inf to denote the essential infimum.

Of course, as in the definition of $B M O$, we need to think of the class of $B L O([0,1])$ functions modulo the set of all functions which are almost everywhere equal to a constant.
In (Korey, 2001), Korey gave the following definition of a subclass in $B L O$.

Definition 4. A BLO function is said to have Vanishing Lower Oscillation $(f \in$ $\operatorname{VLO}([0,1]))$ if it also satisfies:

$$
\begin{equation*}
\limsup _{|I| \rightarrow 0}\left[f_{I}-\inf _{I} f\right]=0 \tag{10}
\end{equation*}
$$

It will be useful to notice that $L^{\infty}([0,1]) \subset B L O([0,1])$ while $L^{\infty}([0,1]) \not \subset$ $V L O([0,1])$. In particular an equivalent distance between $B L O$ functions and L^{∞} is given in (Angrisani, 2017). $B L O([0,1])$ is not a real vector space, since if $f \in B L O([0,1])$ then $-f \in B L O([0,1])$ if and only if $f \in L^{\infty}([0,1])$.
However, if $f, g \in B L O([0,1])$ then $f+g \in B L O([0,1])$ and if $f \in B L O([0,1])$ and $a \in[0,+\infty)$, then $a f \in B L O([0,1])$.
We can define on $B L O([0,1])$ the following quantity:

$$
\begin{equation*}
\|f\|_{B L O}=\sup _{I \subseteq[0,1]} f_{I} f d t-\inf _{I} f \tag{11}
\end{equation*}
$$

observing that:

- $\|f\|_{B L O} \geq 0$ and $\|f\|_{B L O}=0$ if and only if f is constant;
- If $a>0$ then $\|a f\|_{B L O}=a\|f\|_{B L O}$;
- $\|f+g\|_{B L O} \leq\|f\|_{B L O}+\|g\|_{B L O}$.

Even if it lacks homogeneity for negative constants, following other authors (see (Korey, 2001) and (Coifman and Rochberg, 1980)) we will call this quantity a norm on $B L O([0,1])$ anyways.
By using the same notation in the previous section for I_{h}^{x}, S_{h} and T, for a generic function $f \in B L O([0,1])$ let us define the function $F: T \rightarrow \mathbb{R}$ to be

$$
\begin{equation*}
F(x, h)=f_{I_{h}^{x}} f d t-\inf _{I_{h}^{x}} f \tag{12}
\end{equation*}
$$

Thus the norm on $B L O([0,1])$ can be also defined as

$$
\begin{equation*}
\|f\|_{B L O}=\sup _{(x, h) \in T} F(x, h) \tag{13}
\end{equation*}
$$

In terms of F, we have that $f \in V L O([0,1])$ if and only if

$$
\begin{equation*}
\lim _{h \rightarrow 0} \sup _{x \in S_{h}} F(x, h)=0 \tag{14}
\end{equation*}
$$

that is to say that F converges to 0 as $h \rightarrow 0$ uniformly with respect to x.
However, this time it is not true that F is continuous in T for any $f \in B L O([0,1])$. In particular, let us observe that for any $f \in B L O([0,1])$ we can define:

$$
\begin{align*}
G(x, h) & =f_{I_{h}^{x}} f d t \tag{15}\\
H(x, h) & =\inf _{I_{h}^{x}} f \tag{16}
\end{align*}
$$

to obtain that

$$
\begin{equation*}
F(x, h)=G(x, h)+H(x, h) \tag{17}
\end{equation*}
$$

thus, since G is continuous in T (since $f \in L^{1}([0,1])$), then F is continuous if and only if H is continuous.
Let us consider for instance the function $f(x)=\chi[1 / 2,1]$.
We have that $f \in B L O([0,1])$ since $f \in L^{\infty}$ but it is also easy to see that in this case H is not continuous. In particular, let us observe that since $f \notin V L O([0,1])$. Moreover one can see that $\sup _{(x, h) \in T} F=1$ but $F(x, h)<1$ for any $(x, h) \in T$.

3 - THE NORM-ATTAINING PROPERTIES OF $V L O$ FUNCTIONS IN $B L O$

Our aim is to show an analogue of Leibov's Lemma for $V L O$ functions. To do so we need to prove that, at least for a function f in $V L O$, the corresponding F is continuous.

Proposition 2. Let $f \in V L O([0,1])$.Then

$$
H(x, h)=\inf _{I_{x}^{h}} f
$$

is continuous in T.
Proof. Let us prove this assertion by contradiction. Fix $(x, h) \in T$ and let us suppose there exists a $\bar{\varepsilon}>0$ such that for any $\delta>0$ there exists a point $\left(x_{\delta}, h_{\delta}\right)$ such that

$$
\begin{equation*}
\left|x-x_{\delta}\right|+\left|h-h_{\delta}\right| \leq \delta \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|H(x, h)-H\left(x_{\delta}, h_{\delta}\right)\right| \geq \bar{\varepsilon} . \tag{19}
\end{equation*}
$$

To fix the ideas, let us consider $\delta_{n}=\frac{1}{n}$ and let us denote $x_{n}:=x_{\delta_{n}}, h_{n}:=h_{\delta_{n}}$, $I:=I_{h}^{x}$ and $I_{n}:=I_{h_{n}}^{x_{n}}$. Moreover, we can suppose n is big enough to have $I \cap I_{n} \neq \emptyset$. Posing $m_{n}:=\inf _{I_{n} \cup I} f$, Equation (19) assures that

$$
\begin{equation*}
\inf _{I \cap I_{n}} f \neq m_{n} \tag{20}
\end{equation*}
$$

thus

$$
\begin{equation*}
m_{n}=\inf _{I \Delta I_{n}} f \tag{21}
\end{equation*}
$$

where $I \Delta I_{n}=\left(I \backslash I_{n}\right) \cup\left(I_{n} \backslash I\right)$. Let us suppose that $I_{n} \backslash I \neq \emptyset$ and $m_{n}=\inf _{I_{n} \backslash I} f$. Now let us observe that $I_{n} \backslash I$ has at most two connected components $I_{1}=[x+$ $\left.h, x_{n}+h_{n}\right]$ and $I_{2}=\left[x_{n}-h_{n}, x-h\right]$. Thus let us suppose that $m_{n}=\inf _{I_{1}} f$.
Let us suppose that n is big enough to have $x_{n}+h_{n}<x+3 h$ and then let us consider the interval

$$
\begin{equation*}
I_{1}^{*}=\left[2(x+h)-x_{n}-h_{n}, x_{n}+h_{n}\right] \tag{22}
\end{equation*}
$$

on which we have that $\inf _{l_{1}^{*}} f=m_{n}$. Moreover, let us observe that by construction $\left|I_{1}^{*} \cap I\right|=\left|I_{1}\right|$ and $\left|I_{1}^{*}\right|=2\left|I_{1}\right|$. Now, since we have supposed that $m_{n}=\inf _{I_{n} \backslash I} f$, then

$$
m_{n}=H\left(x_{n}, h_{n}\right) \leq H(x, h)
$$

and

$$
\begin{equation*}
H(x, h) \geq m_{n}+\bar{\varepsilon} . \tag{24}
\end{equation*}
$$

By definition we have

$$
\begin{equation*}
\inf _{I_{1}^{*} \cap I} f \geq H(x, h) \geq m_{n}+\bar{\varepsilon} . \tag{25}
\end{equation*}
$$

Now let us observe that

$$
\begin{equation*}
\int_{I_{1}^{*}} f d t=\int_{I_{1}^{*} \cap I} f d t+\int_{I_{1}} f d t \geq\left(2 m_{n}+\bar{\varepsilon}\right)\left|I_{1}\right| \tag{26}
\end{equation*}
$$

and then

$$
\begin{equation*}
f_{I_{1}^{*}} f d t \geq m_{n}+\frac{\bar{\varepsilon}}{2} \tag{27}
\end{equation*}
$$

so that

$$
\begin{equation*}
f_{I_{1}^{*}} f d t-\inf _{I_{1}^{*}} \geq \frac{\bar{\varepsilon}}{2} \tag{28}
\end{equation*}
$$

In such case, let us denote with $I_{n}^{*}:=I_{1}^{*}$. If $m_{n}=\inf _{I_{2}} f$, we can construct in a similar way an interval I_{2}^{*} on which we have Eq. (28) and we can pose $I_{n}^{*}:=I_{2}^{*}$. The construction of I_{n}^{*} can be done in the same way if $I \backslash I_{n} \neq \emptyset$ and $m_{n}=\inf _{I \backslash I_{n}} f$. Thus, for any n there exists an interval I_{n}^{*} with length $\left|I_{n}^{*}\right|=x_{n}+h_{n}-x-h$ such that

$$
\begin{equation*}
f_{I_{n}^{*}} f d t-\inf _{I_{n}^{*}} \geq \frac{\bar{\varepsilon}}{2} \tag{29}
\end{equation*}
$$

that is a contradiction with the fact that $f \in \operatorname{VLO}([0,1])$ since $\left|I_{n}^{*}\right| \rightarrow 0$.
Now we can prove the main result
Proposition 3. If $f \in \operatorname{VLO}([0,1])$ then there exists an interval $I^{*} \subseteq[0,1]$ such that

$$
\begin{equation*}
\|f\|_{B L O}=f_{I^{*}} f d t-\inf _{I^{*}} f \tag{30}
\end{equation*}
$$

Proof. Since $f \in \operatorname{VLO}([0,1]), H$ (and then F) is continuous on T. Moreover, since F converges to 0 as $h \rightarrow 0$ uniformly with respect to x, we can extend F with continuity to

$$
\begin{equation*}
\widetilde{T}=\left\{(x, h) \in \mathbb{R}^{2}: h \in\left[0, \frac{1}{2}\right], x \in S_{h}\right\} \tag{31}
\end{equation*}
$$

by setting $F(x, 0)=0$. Thus, since F is continuous on \widetilde{T} that is compact, there exists a point $\left(x^{*}, h^{*}\right) \in \widetilde{T}$ such that

$$
\begin{equation*}
\sup _{(x, h) \in T} F(x, h)=\max _{(x, h) \in \widetilde{T}} F(x, h)=F\left(x^{*}, h^{*}\right) \tag{32}
\end{equation*}
$$

and in particular we have $I^{*}=I_{h^{*}}^{x^{*}}$.
Let us show that $f \in \operatorname{VLO}([0,1])$ is a sufficient but not necessary condition. Consider

$$
f(x)= \begin{cases}4 x-1 & x \in\left[0, \frac{1}{2}\right] \tag{33}\\ 0 & x \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

First let us observe that $f \in B L O([0,1])$ since $f \in L^{\infty}([0,1])$. Then let us consider the intervals $I_{h}=\left[\frac{1}{2}-h, \frac{1}{2}+h\right]$ for $h<\frac{1}{4}$. Then

$$
\begin{equation*}
\lim _{h \rightarrow 0} f_{I_{h}} f d t-\inf _{I_{h}} f=\lim _{h \rightarrow 0} h-\frac{1}{2}=-\frac{1}{2} \tag{34}
\end{equation*}
$$

so $f \notin V L O([0,1])$. With some easy calculations, one can show that $\|f\|_{B L O}=1$. However, posing $I^{*}=\left[0, \frac{1}{2}\right]$, we have

$$
\begin{equation*}
f_{I^{*}} f d t-\inf _{I^{*}} f=0+1=1=\|f\|_{B L O}, \tag{35}
\end{equation*}
$$

so there is an interval I^{*} attaining $\|f\|_{B L O}$ even if $f \notin V L O([0,1])$.

4 - REFERENCES

Angrisani F. (2017), On the distance in $B L O(\mathbb{R})$ to $L^{\infty}(\mathbb{R})$ and $V L O(\mathbb{R})$, Rendiconto dell'Accademia delle Scienze Fisiche e Matematiche di Napoli, 4.84, 75-86.
Coifman R. R. and Rochberg R. (1980), Another characterization of BMO, Proceedings of the American Mathematical Society, 249-254.
John F. and Nirenberg L. (1961), On functions of bounded mean oscillation, Communications on pure and applied Mathematics, 14.3, 415-426.
Korey M. B. (2001), A decomposition of functions with vanishing mean oscillation, Harmonic Analysis and Boundary Value Problems: Selected Papers from the 25th University of Arkansas Spring Lecture Series, Recent Progress in the Study of Harmonic Measure from a Geometric and Analytic Point of View, March 2-4, 2000, Fayetteville, Arkansas, 277, 45.
Leibov M. V. (1990), Subspaces of the VMO space, Journal of Soviet Mathematics, 48.5, 536-538.
Sarason D. (1975), Functions of vanishing mean oscillation, Transactions of the American Mathematical Society, 207, 391-405.

[^0]: ${ }^{1}$ Dipartimento di Matematica ed Applicazioni "Renato Caccioppoli", Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia 26, 80126 - Napoli, Italia, e-mail: francesca.angrisani@unina.it, ascione.giacomo0@gmail.com

