Popolizio, Marina: 
Numerical Approximation of Matrix Functions for Fractional Differential Equations
 Bollettino dell'Unione Matematica Italiana Serie 9 6 (2013), fasc. n.3, p. 793-815,  (English)
pdf (382 Kb), djvu (224 Kb).  | MR 3202856  
Sunto
In questo lavoro si presentano delle connessioni rilevanti tra le funzioni di matrice e la soluzione di equazioni differenziali di ordine frazionario. Questo nesso è stato notato solo recentemente ed ora riscuote notevole interesse. Si presenta qui una rassegna dei fondamenti del calcolo frazionario e della teoria dell'approssimazione di funzioni di matrice; si mostrano inoltre i contributi che, insieme ad i miei coautori, abbiamo recentemente elaborato su questo argomento [13, 14, 15, 16, 32].
Referenze Bibliografiche
[1] 
BENZI M. and 
BERTACCINI D., 
Block Preconditioning of Real-Valued Iterative Algorithms for Complex Linear Systems, 
IMA Journal of Numerical Analysis, 
28, 598-618 (
2008). | 
fulltext (doi) | 
MR 2433214 | 
Zbl 1145.65022[2] 
BERTACCINI D., 
Efficient preconditioning for sequences of parametric complex symmetric linear systems, 
Electronic Transactions on Numerical Analysis, 
18, 49-64 (
2004). | 
fulltext EuDML | 
MR 2083294 | 
Zbl 1066.65048[3] BERTACCINI D. and POPOLIZIO M., Adaptive updating techniques for the approximation of functions of large matrices, preprint (2012).
[4] 
CODY W. J., 
MEINARDUS G. and 
VARGA R. S., 
Chebyshev rational approximations to $e^{-x}$ in $[0, +\infty)$ and applications to heat-conduction problems, 
J. Approximation Theory, 
2, 50-65 (
1969). | 
fulltext (doi) | 
MR 245224 | 
Zbl 0187.11602[5] 
DEL BUONO N., 
LOPEZ L. and 
PELUSO R., 
Computation of the exponential of large sparse skew-symmetric matrices, 
SIAM J. Sci. Comput., 
27 (1), 278-293 (
2005). | 
fulltext (doi) | 
MR 2201184 | 
Zbl 1108.65037[6] 
DEL BUONO N., 
LOPEZ L. and 
POLITI T., 
Computation of functions of Hamiltonian and skew-symmetric matrices, 
Math. Comput. Simulation, 
79 (4), 1284-1297 (
2008). | 
fulltext (doi) | 
MR 2487801 | 
Zbl 1162.65338[9] 
GARRAPPA R., 
On linear stability of predictor-corrector algorithms for fractional differential equations, 
International Journal of Computer Mathematics, 
87 (10), 2281-2290 (
2010). | 
fulltext (doi) | 
MR 2680147 | 
Zbl 1206.65197[10] 
GARRAPPA R., 
On some generalizations of the implicit Euler method for discontinuous fractional differential equations, 
Mathematics and Computers in Simulation, , 
95 (
2014), 213-228. | 
fulltext (doi) | 
MR 3127766[11] 
GARRAPPA R., 
Stability-preserving high-order methods for multiterm fractional differential equations, 
International Journal of Bifurcation and Chaos, 
22 (4) (
2012), 1-13. | 
fulltext (doi) | 
MR 2926049 | 
Zbl 1258.34011[12] 
GARRAPPA R., 
A family of Adams exponential integrators for fractional linear systems, 
Computers and Mathematics with Applications, (
2013), in print, doi: http://dx.doi.org/10.1016/j.camwa.2013.01.022 | 
fulltext (doi) | 
MR 3089380 | 
Zbl 1350.65078[13] 
GARRAPPA R. and 
POPOLIZIO M., 
On the use of matrix functions for fractional partial differential equations, 
Math. Comput. Simulation, 
81 (5), (
2011), 1045-1056. | 
fulltext (doi) | 
MR 2769818 | 
Zbl 1210.65162[14] 
GARRAPPA R. and 
POPOLIZIO M., 
Generalized exponential time differencing methods for fractional order problems, 
Comput. Math. Appl., 
62(3) (
2011), 876-890 | 
fulltext (doi) | 
MR 2824677 | 
Zbl 1228.65235[15] 
GARRAPPA R. and 
POPOLIZIO M., 
On accurate product integration rules for linear fractional differential equations, 
J. Comput. Appl. Math., 
235 (5) (
2011), 1085-1097. | 
fulltext (doi) | 
MR 2728050 | 
Zbl 1206.65176[16] 
GARRAPPA R. and 
POPOLIZIO M., 
Evaluation of generalized Mittag-Leffler functions on the real line, 
Adv. Comput. Math., 
39 (1) (
2013), 205-225. | 
fulltext (doi) | 
MR 3068601 | 
Zbl 1272.33020[17] 
GOLUB G.H. and 
VAN LOAN C.F., 
Matrix Computations, 
Johns Hopkins Studies in the Mathematical Sciences (
1996). | 
MR 1417720[18] 
GORENFLO R. and 
MAINARDI F., 
Some recent advances in theory and simulation of fractional diffusion processes., 
J. Comput. Appl. Math., 
229 (2) (
2009), 400-415. | 
fulltext (doi) | 
MR 2527894 | 
Zbl 1166.45004[20] 
HOCHBRUCK M. and 
LUBICH C., 
On Krylov subspace approximations to the matrix exponential operator, 
SIAM Journal on Numerical Analysis, 
34 (
1987), 1911-1925. | 
fulltext (doi) | 
MR 1472203 | 
Zbl 0888.65032[22] 
KILBAS A. A., 
SRIVASTAVA H. M. and 
TRUJILLO J. J., 
Theory and applications of fractional differential equations, vol. 
204 of 
North-Holland Mathematics Studies, 
Elsevier Science B.V., Amsterdam (
2006). | 
MR 2218073 | 
Zbl 1092.45003[24] 
LOPEZ L. and 
SIMONCINI V., 
Analysis of projection methods for rational function approximation to the matrix exponential, 
SIAM J. Numer. Anal., 
44 (2) (
2006), 613-635. | 
fulltext (doi) | 
MR 2218962 | 
Zbl 1158.65031[25] 
LOPEZ L. and 
SIMONCINI V., 
Preserving geometric properties of the exponential matrix by block Krylov subspace methods, 
BIT, 
46 (4) (
2006), 813-830. | 
fulltext (doi) | 
MR 2285209 | 
Zbl 1107.65039[26] 
MAGNUS A. P., 
Asymptotics and super asymptotics for best rational approximation error norms to the exponential function (the ``1=9'' problem) by the Carathéodory-Fejér method, 
Nonlinear numerical methods and rational approximation, 
296 (II) (
1994), 173-185. | 
MR 1307197[28] 
MOLER C. and 
VAN LOAN C., 
Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, 
SIAM Review, 
45 (1) (
2003), 3-49. | 
fulltext (doi) | 
MR 1981253 | 
Zbl 1030.65029[29] 
MORET I., 
Rational Lanczos approximations to the matrix square root and related functions, 
Numerical Linear Algebra with Applications, 
16 (
2009), 431-445. | 
fulltext (doi) | 
MR 2522957 | 
Zbl 1224.65124[31] 
MORET I. and 
NOVATI P., 
On the convergence of Krylov subspace methods for matrix Mittag-Leffler functions, 
SIAM Journal on Numerical Analysis, 
49 (
2011), 2144-2164 | 
fulltext (doi) | 
MR 2861713 | 
Zbl 1244.65065[32] 
MORET I. and 
POPOLIZIO M., 
The restarted shift-and-invert Krylov method for matrix functions, 
Numerical Linear Algebra with Applications, 
21 (
2014), 68-80. | 
fulltext (doi) | 
MR 3150610 | 
Zbl 1324.65079[33] 
PETRUSHEV P.P. and 
POPOV V.A., 
Rational approximation of real function, 
Cambridge University Press, Cambridge (
1987). | 
MR 940242 | 
Zbl 0644.41010[34] 
PODLUBNY I., 
Fractional differential equations, 
Mathematics in Science and Engineering, 
Academic Press Inc., San Diego, CA (
1999). | 
MR 1658022 | 
Zbl 0924.34008[35] PODLUBNY I. and KACENAK M., Matlab implementation of the Mittag-Leffler function, available online: http://www.mathworks.com (2005).
[36] 
POLITI T. and 
POPOLIZIO M., 
Schur Decomposition Methods for the Computation of Rational Matrix Functions, 
Computational science-ICCS 2006. Part IV, 
Springer, 3994, 708-715 (
2006). | 
Zbl 1157.65344[37] 
POPOLIZIO M., 
Tecniche di accelerazione per approssimare l'esponenziale di matrice, 
La Matematica nella Società e nella Cultura, Rivista dell'Unione Matematica Italiana, Serie I, Vol. 
II, Agosto (
2009), 275-278. | 
fulltext bdim | 
fulltext EuDML | 
MR 3558968[38] 
POPOLIZIO M. and 
SIMONCINI V., 
Acceleration Techniques for Approximating the Matrix Exponential Operator, 
SIAM J. Matrix Analysis and Appl., 
30 (
2008), 657-683. | 
fulltext (doi) | 
MR 2421464 | 
Zbl 1168.65021[39] 
SAAD Y., 
Analysis of some Krylov subspace approximations to the matrix exponential operator, 
SIAM Journal on Numerical Analysis, 
29 (
1992), 209-228. | 
fulltext (doi) | 
MR 1149094 | 
Zbl 0749.65030[41] 
TREFETHEN L. N., 
Circularity of the error curve and sharpness of the CF method in complex Chebyshev approximation, 
SIAM J. Numer. Anal., 
20 (6) (
1983), 1258-1263. | 
fulltext (doi) | 
MR 723844 | 
Zbl 0551.41042[43] 
VAN DEN ESHOF J. and 
HOCHBRUCK M., 
Preconditioning Lanczos approximations to the matrix exponential, 
SIAM Journal on Scientific Computing, 
27 (
2006), 1438-1457. | 
fulltext (doi) | 
MR 2199756 | 
Zbl 1105.65051[44] 
WEIDEMAN J. A. C. and 
TREFETHEN L. N., 
Parabolic and hyperbolic contours for computing the Bromwich integral, 
Mathematics of Computation, 
78 (
2007), 1341-1358. | 
fulltext (doi) | 
MR 2299777 | 
Zbl 1113.65119