Giannelli, Carlotta and Jüttler, Bert: 
Local and Adaptive Refinement with Hierarchical B-splines
 Bollettino dell'Unione Matematica Italiana Serie 9 6 (2013), fasc. n.3, p. 735-740,  (English)
pdf (426 Kb), djvu (101 Kb).  | MR 3202851  
Sunto
Adaptive spline models for geometric modeling and spline-based PDEs solvers have recently attracted increasing attention both in the context of computer aided geometric design and isogeometric analysis. In particular, approximation spaces defined over extensions of tensor-product meshes which allow axis aligned segments with T-junctions are currently receiving particular attention. In this short paper we review some recent results concerning the characterization of the space spanned by the hierarchical B-spline basis. In addition, we formulate a refinement algorithm which allows us to satisfy the conditions needed for this characterization.
Referenze Bibliografiche
[1] 
A. BUFFA, 
D. CHO and 
G. SANGALLI, 
Linear independence of the T-spline blending functions associated with some particular T-meshes, 
Comput. Methods Appl. Mech. Engrg., 
199 (
2010), 1437-1445. | 
fulltext (doi) | 
MR 2630153 | 
Zbl 1231.65027[2] 
M.R. DÖRFEL, 
B. JÜTTLER and 
B. SIMEON, 
Adaptive Isogeometric Analysis by Local h-Refinement with T-splines, 
Comput. Methods Appl. Mech. Engrg., 
199 (
2010), 264-275. | 
fulltext (doi) | 
MR 2576760[3] D.R. FORSEY and R.H. BARTELS, Hierarchical B-spline refinement, Comput. Graphics, 22 (1988), 205-212.
[4] D.R. FORSEY and R.H. BARTELS, Surface fitting with hierarchical splines, ACM Trans. Graphics, 14 (1995), 134-161.
[5] 
C. GIANNELLI, 
B. JÜTTLER and 
H. SPELEERS, 
THB-splines: the truncated basis for hierarchical splines. 
Comput. Aided Geom. Design, 
29 (
2012), 485-498. | 
fulltext (doi) | 
MR 2925951 | 
Zbl 1252.65030[6] 
C. GIANNELLI, 
B. JÜTTLER and 
H. SPELEERS, 
Strongly stable bases for adaptively refined multilevel spline spaces, 
Adv. Comp. Math., to appear (
2013). | 
fulltext (doi) | 
MR 3194714[7] 
C. GIANNELLI and 
B. JÜTTLER, 
Bases and dimensions of bivariate hierarchical tensor-product splines, 
J. Comput. Appl. Math., 
239 (
2013), 162-178. | 
fulltext (doi) | 
MR 2991965 | 
Zbl 1259.41014[8] 
T.J.R. HUGHES, 
J.A. COTTRELL and 
Y. BAZILEVS, 
Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, 
Comput. Methods Appl. Mech. Engrg., 
194 (
2005), 4135-4195. | 
fulltext (doi) | 
MR 2152382 | 
Zbl 1151.74419[9] 
R. KRAFT, 
Adaptive and linearly independent multilevel B-splines, in: 
LE MÉHAUTÉ A., 
RABUT C. and 
SCHUMAKER L.L. (Eds.), 
Surface Fitting and Multiresolution Methods, 
Vanderbilt University Press, Nashville (
1997), 209-218. | 
MR 1659975 | 
Zbl 0937.65014[10] 
R. KRAFT, 
Adaptive und linear unabhängige Multilevel B-Splines und ihre Anwendungen, PhD Thesis, Universität Stuttgart (
1998). | 
MR 1641654 | 
Zbl 0903.68195[11] 
A.-V. VUONG, 
C. GIANNELLI, 
B. JÜTTLER and 
B. SIMEON, 
A hierarchical approach to adaptive local refinement in isogeometric analysis, 
Comput. Methods Appl. Mech. Engrg., 
200 (
2011), 3554-3567. | 
fulltext (doi) | 
MR 2851579 | 
Zbl 1239.65013