D'Aguì, Giuseppina: 
Molteplicity of Solutions for Sturm-Liouville Problems
 Bollettino dell'Unione Matematica Italiana Serie 9 6 (2013), fasc. n.3, p. 725-734,  (English)
pdf (265 Kb), djvu (83 Kb).  | MR 3202850  
Sunto
The existence of multiple solutions to a Sturm-Liouville boundary value problem is presented. The approach adopted is based on multiple critical points theorems.
Referenze Bibliografiche
[1] H. BRÉZIS, Analyse Functionelle - Théorie et Applications, Masson, Paris, 1983.
[2] 
G. BONANNO and 
P. CANDITO, 
Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, 
J. Differential Equations 244 (
2008), 3031-3059. | 
fulltext (doi) | 
MR 2420513 | 
Zbl 1149.49007[3] 
G. BONANNO and 
G. D'AGUÌ, 
A Neumann boundary value problem for the Sturm-Liouville Equation, 
Applied Mathematics and Computations, 
208, (
2009), 318-327. | 
fulltext (doi) | 
MR 2493824 | 
Zbl 1176.34020[4] 
G. BONANNO and 
S.A. MARANO, 
On the structure of the critical set of non- differentiable functions with a weak compactness condition, 
Appl. Anal., 
89 (
2010), 1-10. | 
fulltext (doi) | 
MR 2604276 | 
Zbl 1194.58008[6] 
G. BONANNO, 
Multiple solutions for a Neumann boundary value problem, 
J. Nonlinear and Convex Anal. 4 (
2003), 287-290. | 
MR 1999269 | 
Zbl 1042.34034[7] 
P. CANDITO, 
Infinitely many solutions to a Neumann problem for ellictic equations involving the p-Laplacian and with discontinuous nonlinearities, 
Proc. Edinb. Math. Soc. 45 (
2002), 397-409. | 
fulltext (doi) | 
MR 1912648 | 
Zbl 1035.35040[9] 
G. D'AGUÌ and 
A. SCIAMMETTA, 
Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions, 
Nonlinear Anal., 
75 (
2012), 5612-5619. | 
fulltext (doi) | 
MR 2942940 | 
Zbl 1277.35171[10] 
G. DAI, 
Infinitely many soluions for a Neumann-Type differential inclusion problem involving the p(x)-Laplacian, 
Nonlinear Anal., 
70, Issue 6, (
2009), 2297- 2305. | 
fulltext (doi) | 
MR 2498314 | 
Zbl 1170.35561[11] 
X. FAN and 
C. JI, 
Existence of Infinitely many solutions for a Neumann problem involving the p(x)-Laplacian, 
J. Math. Anal. Appl. 334 (
2007), 248-260. | 
fulltext (doi) | 
MR 2332553 | 
Zbl 1157.35040[12] 
C. LI, 
The existence of Infinitely many solutions of a class of nonlinear elliptic equations with a Neumann boundary conditions for both resonance and oscillation problems, 
Nonlinear Anal. 54 (
2003), 431-443. | 
fulltext (doi) | 
MR 1978420 | 
Zbl 1126.35320[13] 
C. LI and 
S. LI, 
Multiple solutions and sign-changing solutions of a class of nonlinear elliptic equations with Neumann boundary conditions, 
J. Math. Anal. Appl. 298 (
2004), 14-32. | 
fulltext (doi) | 
MR 2085488 | 
Zbl 1127.35014[14] 
S. MARANO and 
D. MOTREANU, 
Infinitely many Critical points of Non-Differentiable Functions and Applications to the Neumann-Type problem involving the p-Laplacian, 
J. Differential Equations 182 (
2002), 108-120. | 
fulltext (doi) | 
MR 1912071 | 
Zbl 1013.49001[16] 
B. RICCERI, 
Infinitely many solutions of the Neumann problem for elliptic equations involving the p-Laplacian, 
Bull. London Math. Soc. 33 (
2001), 331-340. | 
fulltext (doi) | 
MR 1817772 | 
Zbl 1035.35031[17] 
J.-P. SUN, 
W.-T. LI and 
S.S. CHENG, 
Three positive solutions for second-order Neumann boundary value problems, 
Appl. Math. Letters 17 (
2004), 1079-1084. | 
fulltext (doi) | 
MR 2087758 | 
Zbl 1061.34014[18] 
J.-P. SUN and 
W.-T. LI, 
Multiple positive solutions to second-order Neumann boundary value problems, 
Appl. Math. Comput. 146 (
2003), 187-194. | 
fulltext (doi) | 
MR 2007778 | 
Zbl 1041.34013