bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Scacchi, Simone:
Scalable Block Preconditioners for the Parabolic-Elliptic Bidomain coupling
Bollettino dell'Unione Matematica Italiana Serie 9 6 (2013), fasc. n.3, p. 699-714, (English)
pdf (399 Kb), djvu (190 Kb). | MR 3202848

Sunto

We review some results on parallel multilevel block preconditioners for the Bidomain model of electrocardiology. This model describes the bioelectric activity of the cardiac tissue in terms of the transmembrane electric potential $v$ and the extracellular electric potential $u_{e}$ and it consists of a system of a parabolic non-linear partial differential equation (PDE) for $v$ and an elliptic linear PDE for $u_{e}$. The two PDEs are coupled with a system of ordinary differential equations, modeling the cellular membrane ionic currents. The space and time discretization of the Bidomain system yields at each time step the solution of large and ill-conditioned linear systems. We analyze here the scalability of Multilevel Schwarz Block-Diagonal and Block-Factorized preconditioners for the discrete Bidomain system. New three-dimensional parallel numerical tests on a Linux cluster are performed to compare the Multilevel Schwarz block preconditioners with Block Jacobi (BJ) and Algebraic Multigrid (AMG) preconditioners. The results show that the preconditioners developed are scalable and more efficient than both BJ and AMG preconditioners.
Referenze Bibliografiche
[1] O. AXELSSON, Iterative Solution Methods, Cambridge University Press, 1994. | fulltext (doi) | MR 1276069 | Zbl 0795.65014
[2] S. BALAY - K. BUSCHELMAN - W. D. GROPP - D. KAUSHIK - M. KNEPLEY - L. CURFMAN MCINNES - B. F. SMITH - H. ZHANG, PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2002.
[3] M. BOULAKIA - S. CAZEAU - M. A. FERNANDEZ - J.-F. GERBEAU - N. ZEMZEMI, Mathematical modeling of electrocardiograms: a numerical study. Ann. Biomed. Eng., 38 (3) (2010), 1071-1097.
[4] R. H. CLAYTON - O. BERNUS - E. M. CHERRY - H. DIERCKX - F. H. FENTON - L. MIRABELLA - A. V. PANFILOV - F. B. SACHSE - G. SEEMANN - H. ZHANG, Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progr. Biophys. Molec. Biol., 104 (2011), 22-48.
[5] P. COLLI FRANZONE - L. F. PAVARINO, A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Mod. Meth. Appl. Sci., 14 (6) (2004), 883-911. | fulltext (doi) | MR 2069498 | Zbl 1068.92024
[6] P. COLLI FRANZONE - L. F. PAVARINO - B. TACCARDI, Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models. Math. Biosci., 197 (1) (2005), 33-66. | fulltext (doi) | MR 2167484 | Zbl 1074.92004
[7] P. COLLI FRANZONE - P. DEUFLHARD - B. ERDMANN - J. LANG - L. F. PAVARINO, Adaptivity in space and time for reaction-diffusion systems in Electrocardiology. SIAM J. Sci. Comput., 28 (3) (2006), 942-962. | fulltext (doi) | MR 2240798 | Zbl 1114.65110
[8] P. DEUFLHARD - B. ERDMANN - R. ROITZSCH - G. T. LINES, Adaptive finite element simulation of ventricular fibrillation dynamics. Comput. Visual. Sci., 12 (5) (2009), 201-205. | fulltext (doi) | MR 2507225
[9] M. ETHIER - Y. BOURGAULT, Semi-implicit time-discretization schemes for the Bidomain model. SIAM J. Numer. Anal., 46 (5) (2008), 2443-2468. | fulltext (doi) | MR 2421042 | Zbl 1182.92009
[10] L. GERARDO GIORDA - L. MIRABELLA - F. NOBILE - M. PEREGO - A. VENEZIANI, A model-based block-triangular preconditioner for the Bidomain system in electrocardiology. J. Comp. Phys., 228 (10) (2009), 3625-3639. | fulltext (doi) | MR 2511070 | Zbl 1187.92053
[11] L. GERARDO GIORDA - M. PEREGO - A. VENEZIANI, Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology, Math. Model. Numer. Anal., 45 (2011), 309-334. | fulltext EuDML | fulltext (doi) | MR 2804641 | Zbl 1274.92022
[12] V. HENSON - U. YANG, BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numerical Math., 41 (2002), 155-177. | fulltext (doi) | MR 1908755 | Zbl 0995.65128
[13] Hypre High Performance Preconditioners Users Manual Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Tech. Rep. Software Version: 1.6.0, Jul. 27, 2001.
[14] I. J. LEGRICE - B. H. SMAILL - L. Z. CHAI - S. G. EDGAR - J. B. GAVIN - P. J. HUNTER, Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. Heart Circ. Physiol., 269 (38) (1995), H571-H582.
[15] S. LINGE - J. SUNDNES - M. HANSLIEN - G. T. LINES - A. TVEITO, Numerical solution of the bidomain equations. Phil. Trans. R. Soc. A, 367 (1895) (2009), 1931-1950. | fulltext (doi) | MR 2512073 | Zbl 1185.65169
[16] C. LUO - Y. RUDY, A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ. Res., 68 (6) (1991), 1501-1526.
[17] M. MUNTEANU - L. F. PAVARINO, Decoupled Schwarz algorithms for implicit discretization of nonlinear Monodomain and Bidomain systems. Math. Mod. Meth. Appl. Sci., 19 (7) (2009), 1065-1097. | fulltext (doi) | MR 2553178 | Zbl 1178.65116
[18] M. MUNTEANU - L. F. PAVARINO - S. SCACCHI, A scalable Newton-Krylov-Schwarz method for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput., 31 (5) (2009), 3861-3883. | fulltext (doi) | MR 2556566 | Zbl 1205.65261
[19] M. MURILLO - X.-C. CAI, A fully implicit parallel algorithm for simulating the nonlinear electrical activity of the heart. Numer. Linear Algebra Appl., 11 (2-3) (2004), 261-277. | fulltext (doi) | MR 2065816 | Zbl 1114.65112
[20] L. F. PAVARINO - S. SCACCHI, Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput., 31 (1) (2008), 420-443. | fulltext (doi) | MR 2460784 | Zbl 1185.65179
[21] L. F. PAVARINO - S. SCACCHI, Parallel Multilevel Schwarz and Block Preconditioners for the Bidomain Parabolic-Parabolic and Parabolic-Elliptic Formulations, SIAM J. Sci. Comput., 33 (4) (2011),1897-1919. | fulltext (doi) | MR 2831039 | Zbl 1233.65070
[22] M. PENNACCHIO - G. SAVARÉ - P. COLLI FRANZONE, Multiscale modeling for the bioelectric activity of the heart. SIAM J. Math. Anal., 37 (4) (2006), 1333-1370. | fulltext (doi) | MR 2192297 | Zbl 1113.35019
[23] M. PENNACCHIO - V. SIMONCINI, Algebraic multigrid preconditioners for the bidomain reaction-diffusion system, Appl. Numer. Math., 59 (2009), 3033-3050. | fulltext (doi) | MR 2560833 | Zbl 1171.92017
[24] M. PENNACCHIO - V. SIMONCINI, Fast structured AMG preconditioning for the bidomain model in electrocardiology. SIAM J. Sci. Comput., 33 (2) (2011), 721-745. | fulltext (doi) | MR 2785969 | Zbl 1227.92034
[25] G. PLANK - M. LIEBMANN - R. WEBER DOS SANTOS - E. J. VIGMOND - G. HAASE, Algebraic Multigrid Preconditioner for the Cardiac Bidomain Model. IEEE Trans. Biomed. Engrg., 54 (4) (2007), 585-596.
[26] M. POTSE - B. DUBÈ - J. RICHER - A. VINET - R. GULRAJANI, A comparison of Monodomain and Bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng., 53 (12) (2006), 2425-2434.
[27] S. SCACCHI, A hybrid multilevel Schwarz method for the bidomain model. Comp. Meth. Appl. Mech. Engrg., 197 (45-48) (2008), 4051-4061. | fulltext (doi) | MR 2458128 | Zbl 1194.78048
[28] S. SCACCHI, A multilevel hybrid Newton-Krylov-Schwarz method for the Bidomain model of electrocardiology. Comp. Meth. Appl. Mech. Engrg., 200 (5-8) (2011), 717-725. | fulltext (doi) | MR 2749030 | Zbl 1225.92011
[29] K. B. SKOUIBINE - N. TRAYANOVA - P. MOORE, A numerically efficient model for the simulation of defibrillation in an active bidomain sheet of myocardium. Math. Biosci., 166 (1) (2000), 85-100. | Zbl 0963.92019
[30] B. F. SMITH - P. BJØRSTAD - W. D. GROPP, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, 1996. | MR 1410757
[31] J. SUNDNES - G. T. LINES - K. A. MARDAL - A. TVEITO, Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart. Comput. Meth. Biomech. Biomed. Engrg., 5 (6) (2002), 397-409.
[32] J. SUNDNES - G. T. LINES - A. TVEITO, An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math. Biosci., 194 (2) (2005), 233-248. | fulltext (doi) | MR 2142490 | Zbl 1063.92018
[33] A. TOSELLI - O. B. WIDLUND, Domain Decomposition Methods: Algorithms and Theory. Computational Mathematics, Vol. 34. Springer-Verlag, Berlin, 2004. | fulltext (doi) | MR 2104179 | Zbl 1069.65138
[34] M. VENERONI, Reaction-diffusion systems for the microscopic cellular model of the cardiac electric field. Math. Meth. Appl. Sci., 29 (2006), 1631-1661. | fulltext (doi) | MR 2248561 | Zbl 1108.35090
[35] M. VENERONI, Reaction-Diffusion systems for the macroscopic Bidomain model of the cardiac electric field. Nonlin. Anal.-Real World Appl., 10 (2) (2009), 849-868. | fulltext (doi) | MR 2474265 | Zbl 1167.35403
[36] E. J. VIGMOND - F. AGUEL - N. A. TRAYANOVA, Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Engrg., 49 (2002), 1260-1269.
[37] E. J. VIGMOND - R. WEBER DOS SANTOS - A. J. PRASSL - M. DEO - G. PLANK, Solvers for the cardiac bidomain equations. Progr. Biophys. Molec. Biol., 96 (2008), 3-18.
[38] J. P. WHITELEY, An efficient numerical technique for the solution of the monodomain and bidomain equations. IEEE Trans. Biomed. Engrg., 53 (11) (2006), 2139- 2147.
[39] S. ZAMPINI, Balancing Neumann-Neumann methods for the cardiac Bidomain model. Numer. Math., 123 (2) (2013), 363-393. | fulltext (doi) | MR 3010184 | Zbl 1395.65096
[40] S. ZAMPINI, Dual-primal methods for the cardiac bidomain model. Math. Mod. Meth. Appl. Sci., in press. | fulltext (doi) | MR 3163396 | Zbl 1291.92007

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali