Pusateri, Fabio: 
Space-Time Resonances and the Null Condition for Wave Equations
 Bollettino dell'Unione Matematica Italiana Serie 9 6 (2013), fasc. n.3, p. 513-529,  (English)
pdf (317 Kb), djvu (167 Kb).  | MR 3202837  
Sunto
In this note we describe a recent result obtained by the author and Shatah [26], concerning global existence and scattering for small solutions of nonlinear wave equations. Based on the analysis of space-time resonances, we formulate a very natural non-resonance condition for quadratic nonlinearities that guarantees the existence of global solutions with linear asymptotic behavior. This non-resonance condition turns out to be a generalization of the null condition given by Klainerman in his seminal work [21].
Referenze Bibliografiche
[2] 
Y. CHOQUET-BRUHAT - 
D. CHRISTODOULOU, 
Existence of global solutions of the classical equations of gauge theories, 
C. R. Acad. Sci. Paris Sér. I Math., 
293, no. 3 (
1981), 195-199. | 
MR 635980 | 
Zbl 0478.58027[3] 
D. CHRISTODOULOU, 
Global solutions of nonlinear hyperbolic equations for small initial data. 
Comm. Pure Appl. Math., 
39 (2) (
1986), 267-282. | 
fulltext (doi) | 
MR 820070 | 
Zbl 0612.35090[4] 
R. COIFMAN - 
Y. MEYER, 
Au delà des opérateurs pseudo-différentiels. 
Astérisque, 
57 (
1978). | 
MR 518170 | 
Zbl 0483.35082[6] 
P. GERMAIN - 
N. MASMOUDI, 
Global existence for the Euler-Maxwell system, ArXiv:1107.1595v1, 
2011. | 
fulltext (doi) | 
MR 3239096[7] 
P. GERMAIN - 
N. MASMOUDI - 
J. SHATAH, 
Global solutions for 3D quadratic Schrödinger equations. 
Int. Math. Res. Not. IMRN, (3) (
2009), 414-432. | 
fulltext (doi) | 
MR 2482120 | 
Zbl 1156.35087[8] 
P. GERMAIN - 
N. MASMOUDI - 
J. SHATAH, 
Global solutions for the gravity surface water waves equation in dimension 3. 
Ann. of Math., 
175, no. 2 (
2012), 691-754. | 
fulltext (doi) | 
MR 2993751 | 
Zbl 1241.35003[9] 
P. GERMAIN - 
N. MASMOUDI - 
J. SHATAH, 
Global solutions for a class of 2d quadratic Schrödinger equations. 
J. Math. Pures Appl., 
97, no. 5 (
2012), 505-543. | 
fulltext (doi) | 
MR 2914945 | 
Zbl 1244.35134[13] 
F. JOHN - 
S. KLAINERMAN, 
Almost global existence to nonlinear wave equations in three space dimensions. 
Comm. Pure Appl. Math., 
37 (4) (
1984), 443-455. | 
fulltext (doi) | 
MR 745325 | 
Zbl 0599.35104[14] 
S. KATAYAMA, 
Asymptotic pointwise behavior for systems of semilinear wave equations in three space dimensions. arXiv:1101.3657, 
J. Hyperbolic Differ. Equ. 9 (2) (
2012), 263-323. | 
fulltext (doi) | 
MR 2928109 | 
Zbl 1254.35142[15] 
S. KATAYAMA - 
K. YOKOYAMA, 
Global small amplitude solutions to systems of non-linear wave equations with multiple speeds. 
Osaka J. Math., 
43, no. 2 (
2006), 283-326. | 
MR 2262337 | 
Zbl 1195.35225[16] 
J. KATO - 
F. PUSATERI, 
A new proof of long range scattering for critical nonlinear Schrödinger equations. 
Diff. Int. Equations, 
24 (9-10) (
2011), 923-940. | 
MR 2850346[17] 
M. KEEL - 
H. SMITH - 
C. SOGGE, 
Almost global existence for some semilinear wave equations. Dedicated to the memory of Thomas H. Wolff. 
J. Anal. Math., 
87 (
2002), 265-279. | 
fulltext (doi) | 
MR 1945285[18] 
M. KEEL - 
H. SMITH - 
C. SOGGE, 
Almost global existence for quasilinear wave equations in three space dimensions. 
J. Amer. Math. Soc., 
17 (1) (
2004), 109-153. | 
fulltext (doi) | 
MR 2015331 | 
Zbl 1055.35075[19] 
S. KLAINERMAN, 
Uniform decay estimates and the Lorentz invariance of the classical wave equation. 
Comm. Pure Appl. Math., 
38 (3) (
1985), 321-332. | 
fulltext (doi) | 
MR 784477 | 
Zbl 0635.35059[20] 
S. KLAINERMAN, 
Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions. 
Comm. Pure Appl. Math., 
38 (5) (
1985), 631-641. | 
fulltext (doi) | 
MR 803252 | 
Zbl 0597.35100[21] 
S. KLAINERMAN, 
The null condition and global existence to nonlinear wave equations. 
Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984). 
Lectures in Appl. Math., 
23 (
1986), 293-326. | 
MR 837683[22] 
S. KLAINERMAN - 
T. SIDERIS, 
On almost global existence for nonrelativistic wave equations in 3D. 
Comm. Pure Appl. Math., 
49 (3) (
1996), 307-321. | 
fulltext (doi) | 
MR 1374174 | 
Zbl 0867.35064[25] 
H. LINDBLAD - 
I. RODNIANSKI, 
Global existence for the Einstein vacuum equations in wave coordinates. 
Comm. Math. Phys., 
256(1) (
2005), 43-110. | 
fulltext (doi) | 
MR 2134337 | 
Zbl 1081.83003[26] 
F. PUSATERI - 
J. SHATAH, 
Space-time resonances and the null condition for (first order) systems of wave equations. arXiv:1109.5662 (2011), 
Comm. Pure and Appl. Math., 
66 (2) (
2013), 1495-1540. | 
fulltext (doi) | 
MR 3084697 | 
Zbl 1284.35261[29] 
T. SIDERIS - 
S. TU, 
Global existence for systems of nonlinear wave equations in 3D with multiple speeds. 
SIAM J. Math. Anal. 33, no. 2 (
2001), 477-488. | 
fulltext (doi) | 
MR 1857981 | 
Zbl 1002.35091[31] 
J. SHATAH - 
M. STRUWE, 
Geometric wave equations, volume 
2 of 
Courant Lecture Notes in Mathematics. New York University, 
Courant Institute of Mathematical Sciences, New York, 
1998. | 
MR 1674843 | 
Zbl 0993.35001[32] 
J. SIMON, 
A wave operator for a nonlinear Klein-Gordon equation. 
Lett. Math. Phys. 7, no. 5 (
1983), 387-398. | 
fulltext (doi) | 
MR 719852