In the framework of the theory of nonequilibrium thermodynamics, phase transitions with glass formation in binary alloys are here modelled as a multi-non-linear system of PDEs. A weak formulation is provided for an initial- and boundary-value problem, and existence of a solution is studied. This model is then reformulated as a minimization problem, on the basis of a theory that was pioneered by Fitzpatrick [MR 1009594]. This provides a tool for the analysis of compactness and structural stability of the dependence of the solution(s) on data and operators, via De Giorgi's notion of $\gamma$-convergence. This latter issue is here dealt with in some simpler settings.
Referenze Bibliografiche
[2] V. ALEXIADES - A. D. SOLOMON, Mathematical Modeling of Melting and Freezing Processes. Hemisphere Publishing, Washington DC 1993.
[3] 
V. ALEXIADES - 
D. G. WILSON - 
A. D. SOLOMON, 
Macroscopic global modeling of binary alloy solidification processes. 
Quart. Appl. Math. 43 (
1985), 143-158. | 
fulltext (doi) | 
MR 793522 | 
Zbl 0582.35115[5] 
N. ANSINI - 
G. DAL MASO - 
C. I. ZEPPIERI, 
New results on Gamma-limits of integral functionals. Preprint SISSA, Trieste, 
2012. | 
fulltext (doi) | 
MR 3165285[6] 
H. ATTOUCH, 
Variational Convergence for Functions and Operators. 
Pitman, Boston 
1984. | 
MR 773850 | 
Zbl 0561.49012[9] 
A. BRAIDES - 
A. DEFRANCESCHI, 
Homogenization of Multiple Integrals. 
Oxford University Press, Oxford 
1998. | 
MR 1684713 | 
Zbl 0911.49010[10] 
H. BREZIS, 
Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. 
North-Holland, Amsterdam 
1973. | 
MR 348562 | 
Zbl 0252.47055[11] 
H. BREZIS - 
I. EKELAND, 
Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps and II. Le cas dépendant du temps. 
C. R. Acad. Sci. Paris Sér. A-B, 
282 (
1976), 971-974, and ibid. 1197-1198. | 
MR 637214 | 
Zbl 0332.49032[13] 
R. S. BURACHIK - 
B. F. SVAITER, 
Maximal monotone operators, convex functions, and a special family of enlargements. 
Set-Valued Analysis 10 (
2002), 297-316. | 
fulltext (doi) | 
MR 1934748 | 
Zbl 1033.47036[15] 
H. B. CALLEN, 
Thermodynamics and an Introduction to Thermostatistics. 
Wiley, New York 
1985. | 
Zbl 0989.80500[16] B. CHALMERS, Principles of Solidification. Wiley, New York 1964.
[18] J. W. CHRISTIAN, The Theory of Transformations in Metals and Alloys. Part 1: Equilibrium and General Kinetic Theory. Pergamon Press, London 2002.
[21] 
E. DE GIORGI - 
T. FRANZONI, 
Su un tipo di convergenza variazionale. 
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 
58 (
1975), 842-850. | 
fulltext EuDML | 
MR 448194[22] 
S. R. DE GROOT, 
Thermodynamics of Irreversible Processes. Amsterdam, 
North-Holland 1961. | 
MR 43729 | 
Zbl 0045.27104[23] 
S. R. DE GROOT - 
P. MAZUR, 
Non-equilibrium Thermodynamics. Amsterdam, 
North-Holland 1962. | 
MR 140332 | 
Zbl 1375.82003[24] 
E. DIBENEDETTO - 
R. E. SHOWALTER, 
Implicit degenerate evolution equations and applications. 
S.I.A.M. J. Math. Anal. 12 (
1981), 731-751. | 
fulltext (doi) | 
MR 625829 | 
Zbl 0477.47037[25] 
J. D. P. DONNELLY, 
A model for non-equilibrium thermodynamic processes involving phase changes. 
J. Inst. Math. Appl. 24 (
1979), 425-438. | 
MR 556152 | 
Zbl 0426.35060[26] 
I. EKELAND - 
R. TEMAM, 
Analyse Convexe et Problèmes Variationnelles. 
Dunod Gauthier-Villars, Paris 
1974. | 
MR 463993[27] 
C. ECKART, 
The thermodynamics of irreversible processes I: The simple fluid. 
Physical Reviews, 
58 (
1940). 
The thermodynamics of irreversible processes II. Fluid mixtures. 
Physical Reviews 58 (
1940). | 
Zbl 66.1077.01[28] 
C. M. ELLIOTT - 
J. R. OCKENDON, 
Weak and Variational Methods for Moving Boundary Problems. 
Pitman, Boston, 
1982. | 
MR 650455 | 
Zbl 0476.35080[29] 
W. FENCHEL, 
Convex Cones, Sets, and Functions. 
Princeton Univ., 
1953. | 
Zbl 0053.12203[30] 
S. FITZPATRICK, 
Representing monotone operators by convex functions. 
Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65, 
Proc. Centre Math. Anal. Austral. Nat. Univ., 
20, 
Austral. Nat. Univ., Canberra, 
1988. | 
MR 1009594 | 
Zbl 0669.47029[31] M. C. FLEMINGS, Solidification Processing. McGraw-Hill, New York 1973.
[32] 
G. FRANCFORT - 
F. MURAT - 
L. TARTAR, 
Homogenization of monotone operators in divergence form with $x$-dependent multivalued graphs. 
Ann. Mat. Pura Appl. (4) 
118 (
2009), 631-652. | 
fulltext (doi) | 
MR 2533960 | 
Zbl 1180.35077[33] M. FRÉMOND, Phase Change in Mechanics. Springer, Berlin 2012.
[35] 
N. GHOUSSOUB, 
Self-Dual Partial Differential Systems and their Variational Principles. 
Springer, 
2009. | 
MR 2458698 | 
Zbl 1357.49004[37] 
S. C. GUPTA, 
The Classical Stefan Problem. Basic Concepts, Modelling and Analysis. 
North-Holland Series. 
Elsevier, Amsterdam 
2003. | 
MR 2032973[38] 
M. E. GURTIN, 
Thermomechanics of Evolving Phase Boundaries in the Plane. 
Clarendon Press, Oxford 
1993. | 
MR 1402243 | 
Zbl 0787.73004[39] J.-B. HIRIART-URRUTY - C. LEMARECHAL, Convex Analysis and Optimization Algorithms. Springer, Berlin 1993.
[40] D. KONDEPUDI - I. PRIGOGINE, Modern Thermodynamics. Wiley, New York 1998.
[41] W. KURZ - D. J. FISHER, Fundamentals of Solidification. Trans Tech, Aedermannsdorf 1989.
[42] 
J. L. LIONS - 
E. MAGENES, 
Non-Homogeneous Boundary Value Problems and Applications. Vols. 
I, 
II. 
Springer, Berlin 
1972 (French edition: 
Dunod, Paris 
1968). | 
MR 350177[43] S. LUCKHAUS, Solidification of alloys and the Gibbs-Thomson law. Preprint, 1994.
[46] 
J.-E. MARTINEZ-LEGAZ - 
B. F. SVAITER, 
Minimal convex functions bounded below by the duality product. 
Proc. Amer. Math. Soc. 136 (
2008), 873-878. | 
fulltext (doi) | 
MR 2361859 | 
Zbl 1133.47040[47] 
J.-E. MARTINEZ-LEGAZ - 
M. THÉRA, 
A convex representation of maximal monotone operators. 
J. Nonlinear Convex Anal. 2 (
2001), 243-247. | 
MR 1848704 | 
Zbl 0999.47037[48] 
M. MARQUES ALVES - 
B.F. SVAITER, 
Brndsted-Rockafellar property and maximality of monotone operators representable by convex functions in non-reflexive Banach spaces. 
J. Convex Analysis 15 (
2008), 693-706. | 
MR 2489609 | 
Zbl 1161.47034[49] I. MÜLLER, A History of Thermodynamics. Springer, Berlin 2007.
[50] 
I. MÜLLER - 
W. WEISS, 
Entropy and Energy. A Universal Competition. 
Springer, Berlin 
2005. | 
MR 2282821[51] I. MÜLLER - W. WEISS, A history of thermodynamics of irreversible processes. (in preparation).
[52] 
B. NAYROLES, 
Deux théorèmes de minimum pour certains systèmes dissipatifs. 
C. R. Acad. Sci. Paris Sér. A-B 282 (
1976), A1035-A1038. | 
MR 418609 | 
Zbl 0345.73037[53] 
O. PENROSE - 
P.C. FIFE, 
Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. 
Physica D 43 (
1990), 44-62. | 
fulltext (doi) | 
MR 1060043 | 
Zbl 0709.76001[54] 
O. PENROSE - 
P.C. FIFE, 
On the relation between the standard phase-field model and a ``thermodynamically consistent'' phase-field model. 
Physica D, 
69 (
1993), 107-113. | 
fulltext (doi) | 
MR 1245658 | 
Zbl 0799.76084[55] 
I. PRIGOGINE, 
Thermodynamics of Irreversible Processes. 
Wiley-Interscience, New York 
1967. | 
MR 135908 | 
Zbl 0115.23101[56] 
R. T. ROCKAFELLAR, 
Convex Analysis. 
Princeton University Press, Princeton 
1969. | 
MR 274683[58] 
A. D. SOLOMON - 
V. ALEXIADES - 
D. G. WILSON, 
A numerical simulation of a binary alloy solidification process. 
S.I.A.M. J. Sci. Statist. Comput. 6 (
1985), 911-922. | 
fulltext (doi) | 
MR 801180 | 
Zbl 0588.65084[59] J. STEFAN, Über einige Probleme der Theorie der Wärmeleitung. Sitzungber., Wien, Akad. Mat. Natur. 98 (1889), 473-484. Also ibid. pp. 614-634, 965-983, 1418-1442.
[60] 
B. F. SVAITER, 
Fixed points in the family of convex representations of a maximal monotone operator. 
Proc. Amer. Math. Soc. 131 (
2003), 3851-3859. | 
fulltext (doi) | 
MR 1999934 | 
Zbl 1053.47046[61] 
L. TARTAR, 
Nonlocal effects induced by homogenization. In: 
Partial Differential Equations and the Calculus of Variations, Vol. II (
F. Colombini, 
A. Marino, 
L. Modica and 
S. Spagnolo, Eds.) 
Birkhäuser (Boston 
1989), 925-938. | 
MR 1034036[64] 
D. A. TARZIA, 
A bibliography on moving-free boundary problems for the heat-diffusion equation. The Stefan and related problems. Universidad Austral, Departamento de Matematica, Rosario, 
2000. | 
MR 1802028 | 
Zbl 0963.35207[66] 
A. VISINTIN, 
Introduction to Stefan-type problems. In: 
Handbook of Differential Equations: Evolutionary Differential Equations vol. IV (
C. Dafermos and 
M. Pokorny, eds.) 
North-Holland, Amsterdam (
2008), chap. 8, 377-484. | 
MR 1500159 | 
Zbl 1183.35279[67] 
A. VISINTIN, 
Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. 
Adv. Math. Sci. Appl. 18 (
2008), 633-650. | 
MR 2489147 | 
Zbl 1191.47067[72] 
A. VISINTIN, 
Structural stability of rate-independent nonpotential flows. 
Discrete and Continuous Dynamical Systems 6 (
2013), 257-275. doi:10.3934/dcdss.2013.6.257 | 
fulltext (doi) | 
MR 2983478 | 
Zbl 1262.35141[73] 
A. VISINTIN, 
Variational formulation and structural stability of monotone equations. 
Calc. Var. Partial Differential Equations (in press). | 
fulltext (doi) | 
MR 3044140 | 
Zbl 1304.47073[74] D. P. WOODRUFF, The Solid-Liquid Interface. Cambridge Univ. Press, Cambridge 1973.
[75] L. C. WOODS, The Thermodynamics of Fluid Systems. Clarendon Press, Oxford 1975.