bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Golinskii, L. and Kumar, K. and Namboodiri, M. N. N. and Serra-Capizzano, S.:
A Note on a Discrete Version of Borg's Theorem via Toeplitz-Laurent Operators with Matrix-Valued Symbols
Bollettino dell'Unione Matematica Italiana Serie 9 6 (2013), fasc. n.1, p. 205-218, (English)
pdf (300 Kb), djvu (129 Kb). | MR 3076848 | Zbl 1277.47041

Sunto

Consider a one dimensional Schrödinger operator $\tilde{A} = -\ddot{u} + V \cdot u$ with a periodic potential $V(\cdot)$, defined on a suitable subspace of $L^{2}(\mathbb{R})$. Its spectrum is the union of closed intervals, and in general these intervals are separated by open intervals (spectral gaps). The Borg theorem states that we have no gaps if and only if the periodic potential $V(\cdot)$ is constant almost everywhere. In this paper we consider families of Finite Difference approximations of the operator $\tilde{A}$, which depend upon two parameters $n$, i.e., the number of periodicity intervals possibly infinite, and $p$, i.e., the precision of the approximation in each interval. We show that the approach, with fixed $p$, leads to families of sequences $\{A_{n}(p)\}$, where every matrix $A_{n}(p)$ can be interpreted as a block Toeplitz matrix generated by a $p \times p$ matrix-valued symbol $f$. In other words, every $A_{n}(p)$ with finite $n$ is a finite section of the double infinite Toeplitz-Laurent operator $A_{\infty}(p) = L(f)$. The specific feature of the symbol $f$ , which is a trigonometric polynomial of 1st degree, allows to identify the distribution of the collective spectra of the matrix-sequence $\{A_{n}(p)\}$, and, in particular, provide a simple way for proving a discrete version of Borg's theorem: the discrete operator $L(f)$ has no gaps if and only if the corresponding ``potential'' is constant. The result partly overlaps with known results by Flaschka from the operator theory. The main novelty here is the purely linear algebra approach.
Referenze Bibliografiche
[1] W. ARVESON, $C^*$-Algebras and Numerical Linear Algebra. J. Funct. Anal. 122 (1994), 333-360. | fulltext (doi) | MR 1276162 | Zbl 0802.46069
[2] R. BHATIA, Matrix Analysis. (Graduate text in Mathematics) Springer Verlag, New York (1997). | fulltext (doi) | MR 1477662
[3] G. BORG, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe Bestimmung der Differentialgleichung durch die Eigenwerte. Acta Math. 78 (1946), 1-96. | fulltext (doi) | MR 15185 | Zbl 0063.00523
[4] A. BÖTTCHER - B. SILBERMANN, Analysis of Toeplitz Operators. Springer Verlag, Berlin (1990). | fulltext (doi) | MR 1071374
[5] A. BÖTTCHER - B. SILBERMANN, Introduction to Large Truncated Toeplitz Matrices. Springer-Verlag, New York (1999). | fulltext (doi) | MR 1724795
[6] A. BULTHEEL - M. VAN BAREL, Linear algebra, rational approximation and orthogonal polynomials. (Studies in Computational Mathematics, 6) North-Holland Publishing Co., Amsterdam (1997). | MR 1602017 | Zbl 0890.65024
[7] R. CARMONA - J. LACROIX, Spectral Theory of random Schrodinger operators, Birkhauser, Boston (1990). | fulltext (doi) | MR 1102675 | Zbl 0717.60074
[8] S. CLARK - F. GESZTESY - W. RENDER, Trace formulas and Borg-type theorems for matrix-valued Jacobi and Dirac finite difference operators. J. Differ. Eq. 219 (2005), 144-182. | fulltext (doi) | MR 2181033 | Zbl 1085.39016
[9] E. B. DAVIES, Spectral Enclosures and complex resonances for Self adjoint Operators. LMS J. Comput. Math. 1 (1998), 42-74. | fulltext (doi) | MR 1635727 | Zbl 0931.47021
[10] E.B. DAVIES - M. PLUM, Spectral Pollution. IMA J. Numer. l Anal. 24 (2004), 417-438. | fulltext (doi) | MR 2068830 | Zbl 1062.65056
[11] B. DESPRES, The Borg theorem for the vectorial Hill's equation. Inverse Problems 11 (1995), 97-121. | MR 1313602 | Zbl 0821.34014
[12] H. FLASCHKA, Discrete and periodic illustrations of some aspects of the inverse method. Lecture Notes in Physics, 38 (1975), 441-466. | MR 455033 | Zbl 0319.35022
[13] U. GRENANDER - G. SZEGÖ, Toeplitz Forms and Their Applications. Chelsea, New York, second edition (1984). | MR 890515
[14] M. REED - B. SIMON, Methods of Modern Mathematical Physics, Analysis of operators IV. Academic Press, New York (1978). | MR 751959 | Zbl 0401.47001
[15] S. SERRA-CAPIZZANO, Distribution results on the algebra generated by Toeplitz sequences: a finite dimensional approach. Linear Algebra Appl. 328 (2001), 121-130. | fulltext (doi) | MR 1823514 | Zbl 1003.15008
[16] P. TILLI, A Note on the Spectral Distribution of Toeplitz Matrices. Linear Multilin. Algebra, 45 (1998), 147-159. | fulltext (doi) | MR 1671591 | Zbl 0951.65033

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali