This article is a revised version of the text of the plenary conference I gave at the XIX Congress of ``Unione Matematica Italiana'', held in Bologna in September 2011. It discusses the arithmetic significance of the values at integers of the complex and p-adic L-functions associated to Dirichlet characters and to elliptic curves.
Referenze Bibliografiche
[Bei] 
A. A. BEILINSON Higher regulators of modular curves, 
Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), 1-34, 
Contemp. Math., 
55, 
Amer. Math. Soc., Providence, RI, 
1986. | 
fulltext (doi) | 
MR 862627[BCDT] 
C. BREUIL - 
B. CONRAD - 
F. DIAMOND - 
R. TAYLOR, 
On the modularity of elliptic curves over $\mathbb{Q}$: wild 3-adic exercises, 
J. Amer. Math. Soc., 
14, no. 4 (
2001), 843-939. | 
fulltext (doi) | 
MR 1839918 | 
Zbl 0982.11033[BD1] 
M. BERTOLINI - 
H. DARMON, 
Kato's Euler system and rational points on elliptic curves I: A p-adic Beilinson formula, 
Israel Journal of Math., to appear. | 
fulltext (doi) | 
MR 3219532 | 
Zbl 1317.11071[BD2] 
M. BERTOLINI - 
H. DARMON, 
Kato's Euler system and rational points on elliptic curves II: The explicit reciprocity law, in preparation. | 
Zbl 1317.11071[BD3] M. BERTOLINI - H. DARMON, Kato's Euler system and rational points on elliptic curves III: The conjecture of Perrin-Riou, in preparation.
[BDP1] 
M. BERTOLINI - 
H. DARMON - 
K. PRASANNA, 
Generalised Heegner cycles and p-adic Rankin L-series, 
Duke Math. J., to appear. | 
fulltext (doi) | 
MR 3053566[Ber] 
M. BERTOLINI, 
Report on the Birch and Swinnerton-Dyer conjecture, 
Milan J. Math., 
78, no. 1 (
2010), 153-178. | 
fulltext (doi) | 
MR 2684777[Bes1] 
A. BESSER, 
Syntomic regulators and p-adic integration. I. Rigid syntomic regulators, Proceedings of the Conference on p-adic Aspects of the Theory of Automorphic Representations (Jerusalem, 1998) 
Israel J. Math., 
120, part B (
2000), 291-334. | 
fulltext (doi) | 
MR 1809626 | 
Zbl 1001.19003[Bes2] 
A. BESSER, 
Syntomic regulators and p-adic integration. II. $K_2$ of curves, Proceedings of the Conference on p-adic Aspects of the Theory of Automorphic Representations (Jerusalem, 1998). 
Israel J. Math., 
120, part B (
2000), 335-359. | 
fulltext (doi) | 
MR 1809627 | 
Zbl 1001.19004[Bl] 
S. J. BLOCH, 
Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, 
CRM Monograph Series, 
11. 
American Mathematical Society, Providence, RI, 
2000. x+97 pp. | 
MR 1760901[Br] 
F. BRUNAULT, 
Régulateurs p-adiques explicites pour le $K_2$ des courbes elliptiques, 
Actes de la Conférence ``Fonctions L et Arithmétique'', 29-57, 
Publ. Math. Besançon Algèbre Théorie Nr., 
Lab. Math. Besançon, Besançon, 
2010. | 
MR 2744770[Colz] 
P. COLMEZ, 
La conjecture de Birch et Swinnerton-Dyer p-adique, (French) 
Astérisque No. 
294 (
2004), ix, 251-319. | 
MR 2111647[De] 
P. DELIGNE, 
Valeurs de fonctions L et périodes d'intégrales, With an appendix by N. Koblitz and A. Ogus. 
Proc. Sympos. Pure Math., 
XXXIII, 
Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 313-346, 
Amer. Math. Soc., Providence, R.I., 
1979. | 
MR 546622[Ge] 
M. GEALY, 
On the Tamagawa number conjecture for motives attached to modular forms, PhD Thesis, California Institute of Technology, 
2006. | 
MR 2709207[Ka] 
K. KATO, 
p-adic Hodge theory and values of zeta functions of modular forms. Cohomologies p-adiques et applications arithmétiques. III, 
Astérisque No. 
295 (
2004), ix, 117-290. | 
MR 2104361[Ki] 
M. KIM, 
Classical motives and motivic L-functions, 
Autour des motifs-École d'été Franco-Asiatique de Géométrie Algébrique et de Théorie des Nombres/Asian-French Summer School on Algebraic Geometry and Number Theory. Volume I, 1-25, 
Panor. Synthèses, 
29, 
Soc. Math. France, Paris, 
2009. | 
MR 2730655[Kit] 
K. KITAGAWA, 
On standard p-adic L-functions of families of elliptic cusp forms, in 
p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), 81-110, 
Contemp. Math., 
165, 
Amer. Math. Soc., Providence, RI, 
1994. | 
fulltext (doi) | 
MR 1279604[Ko] 
V. A. KOLYVAGIN, 
Euler systems, 
The Grothendieck Festschrift, Vol. II, 435-483, 
Progr. Math., 
87, 
Birkhäuser Boston, Boston, MA, 
1990. | 
MR 1106906[La] 
S. LANG, 
Cyclotomic fields I and II. Combined second edition. With an appendix by Karl Rubin. 
Graduate Texts in Mathematics, 
121. 
Springer-Verlag, New York, 
1990, xviii+433. | 
fulltext (doi) | 
MR 1029028 | 
Zbl 0704.11038[Man] 
JU. I. MANIN, 
Parabolic points and zeta functions of modular curves, 
Izv. Akad. Nauk SSSR Ser. Mat., 
36 (
1972), 19-66. | 
MR 314846 | 
Zbl 0243.14008[PR2] 
B. PERRIN-RIOU, 
Fonctions L p-adiques d'une courbe elliptique et points rationnels, 
Ann. Inst. Fourier (Grenoble), 
43, no. 4 (
1993), 945-995. | 
fulltext EuDML | 
MR 1252935 | 
Zbl 0840.11024[Ru] K. C. RUBIN, The main conjecture, Appendix to [La].
[Sil]
J. H. SILVERMAN, 
The arithmetic of elliptic curves. Second edition. 
Graduate Texts in Mathematics, 
106. 
Springer, Dordrecht, 
2009. xx+513 pp. | 
fulltext (doi) | 
MR 2514094 | 
Zbl 1194.11005[So] 
C. SOULÉ , 
Éléments cyclotomiques en K-théorie, Journées arithmétiques de Besançon, 
Astérisque No. 
147-
148 (
1987), 225-257. | 
MR 891430[Wa1] 
L. C. WASHINGTON, 
Introduction to cyclotomic fields. Second edition. 
Graduate Texts in Mathematics, 
83. 
Springer-Verlag, New York, 
1997. xiv+487 pp. | 
fulltext (doi) | 
MR 1421575 | 
Zbl 0966.11047[Wa2] 
L. C. WASHINGTON, 
Euler factors for p-adic L-functions, 
Mathematika, 
25, no. 1 (
1978), 68-75. | 
fulltext (doi) | 
MR 506178[Wi2] 
A. WILES, 
The Birch and Swinnerton-Dyer conjecture, on the Clay Mathematics Institute web site: http://www.claymath.org/millennium/ | 
Zbl 1194.11006