Terracini, Susanna: 
Le traiettorie paraboliche della meccanica celeste come transizioni di fase minimali
 Bollettino dell'Unione Matematica Italiana Serie 9 5 (2012), fasc. n.3, p. 689-710,  (Italian)
pdf (647 Kb), djvu (270 Kb).  | MR 3051740  | Zbl 1282.70029 
Sunto
Quanto segue è il testo della conferenza plenaria che ho tenuto al XVIII Congresso dell'Unione Matematica Italiana, in cui ho esposto il contenuto di due lavori in collaborazione con V. Barutello e G. Verzini ([2, 3]). In tali lavori si è sviluppato l'approccio variazionale alle traiettorie paraboliche della Meccanica Celeste, che connettono due configurazioni centrali minimali.
Referenze Bibliografiche
[1] 
V. BARUTELLO - 
D. L. FERRARIO - 
S. TERRACINI, 
On the singularities of generalized solutions to n-body-type problems, 
Int. Math. Res. Not. IMRN (
2008). | 
fulltext (doi) | 
MR 2439573 | 
Zbl 1143.70005[2] 
V. BARUTELLO - 
S. TERRACINI - 
G. VERZINI, 
Entire Minimal Parabolic Trajectories: the planar anisotropic Kepler problem, 
Arch. Ration. Mech. Anal., to appear (
2011). | 
fulltext (doi) | 
MR 3005324 | 
Zbl 1320.70006[4] 
V. BENCI, 
Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, 
Ann. Inst. H. Poincaré Anal. Non Linéaire, 
1 (
1984), 401-412. | 
fulltext EuDML | 
MR 779876 | 
Zbl 0588.35007[5] J. CHAZY, Sur certaines trajectoires du problème des n corps, Bulletin Astronomique, 35 (1918), 321-389.
[6] 
J. CHAZY, 
Sur l'allure du mouvement dans le problème de trois corps quand le temps crois indèfinimment, 
Ann. Sci. Ec. Norm. Sup., 
39 (
1922), 29-130. | 
fulltext EuDML | 
MR 1509241 | 
Zbl 48.1074.04[7] 
K.-C. CHEN, 
Action-minimizing orbits in the parallelogram four-body problem with equal masses, 
Arch. Ration. Mech. Anal., 
158 (
2001), 293-318. | 
fulltext (doi) | 
MR 1847429 | 
Zbl 1028.70009[8] 
K.-C. CHEN, 
Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses, 
Ann. of Math. (2), 
167 (
2008), 325-348. | 
fulltext (doi) | 
MR 2415377 | 
Zbl 1170.70006[9] 
K.-C. CHEN, 
Variational constructions for some satellite orbits in periodic gravitational force fields, 
Amer. J. Math., 
132 (
2010), 681-709. | 
fulltext (doi) | 
MR 2666904 | 
Zbl 1250.70012[10] 
A. CHENCINER, 
Collisions totales, mouvements complètement paraboliques et réduction des homothéties dans le problème des n corps, 
Regul. Chaotic Dyn., 
3 (
1998), 93-106. | 
fulltext (doi) | 
MR 1704972 | 
Zbl 0973.70011[13] 
F. H. CLARKE - 
R. B. VINTER, 
Regularity properties of solutions to the basic problem in the calculus of variations, 
Trans. Amer. Math. Soc., 
289 (
1985), 73-98. | 
fulltext (doi) | 
MR 779053 | 
Zbl 0563.49009[14] 
A. DA LUZ - 
E. MADERNA, 
On the free time minimizers of the newtonian n-body problem, 
Math. Proc. Cambridge Philos. Soc., to appear (
2011). | 
fulltext (doi) | 
MR 3177865 | 
Zbl 1331.70035[16] 
R. L. DEVANEY, 
Singularities in classical mechanical systems, in 
Ergodic theory and dynamical systems, I (College Park, Md., 1979-80), vol. 
10 of 
Progr. Math., 
Birkhäuser Boston, Mass., 
1981, 211-333. | 
MR 633766[17] A. FATHI, Weak Kam Theorem in Lagrangian Dynamics, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2007.
[18] 
A. FATHI - 
E. MADERNA, 
Weak KAM theorem on non compact manifolds, 
NoDEA Nonlinear Differential Equations Appl., 
14 (
2007), 1-27. | 
fulltext (doi) | 
MR 2346451[20] 
D. L. FERRARIO, 
Symmetry groups and non-planar collisionless action-minimizing solutions of the three-body problem in three-dimensional space, 
Arch. Ration. Mech. Anal., 
179 (
2006), 389-412. | 
fulltext (doi) | 
MR 2208321 | 
Zbl 1138.70322[23] 
D. L. FERRARIO - 
S. TERRACINI, 
On the existence of collisionless equivariant minimizers for the classical n-body problem, 
Invent. Math., 
155 (
2004), 305-362. | 
fulltext (doi) | 
MR 2031430 | 
Zbl 1068.70013[24] 
G. FUSCO - 
G. F. GRONCHI - 
P. NEGRINI, 
Platonic polyhedra, 
topological constraints and periodic solutions of the classical N-body problem, 
Invent. Math., 
185 (
2011), 283-332. | 
fulltext (doi) | 
MR 2819162 | 
Zbl 1305.70023[27] 
M. C. GUTZWILLER, 
The anisotropic Kepler problem in two dimensions, 
J. Mathematical Phys., 
14 (
1973), 139-152. | 
fulltext (doi) | 
MR 349203[28] 
M. C. GUTZWILLER, 
Bernoulli sequences and trajectories in the anisotropic Kepler problem, 
J. Mathematical Phys., 
18 (
1977), 806-823. | 
fulltext (doi) | 
MR 459107[29] 
J. K. HALE - 
H. KOÇAK, 
Dynamics and bifurcations, vol. 
3 of 
Texts in Applied Mathematics, 
Springer-Verlag, New York, 
1991. | 
fulltext (doi) | 
MR 1138981[30] 
N. D. HULKOWER - 
D. G. SAARI, 
On the manifolds of total collapse orbits and of completely parabolic orbits for the n-body problem, 
J. Differential Equations, 
41 (
1981), 27-43. | 
fulltext (doi) | 
MR 626619 | 
Zbl 0475.70010[31] 
M. KLEIN - 
A. KNAUF, 
Classical planar scattering by coulombic potentials, 
Lecture Notes in Physics Monographs, 
Springer-Verlag, Berlin, 
1992. | 
MR 3752660 | 
Zbl 0783.70001[34] 
E. MADERNA - 
A. VENTURELLI, 
Globally minimizing parabolic motions in the Newtonian N-body problem, 
Arch. Ration. Mech. Anal., 
194 (
2009), 283-313. | 
fulltext (doi) | 
MR 2533929 | 
Zbl 1253.70015[35] 
E. MADERNA, 
On weak kam theory for N-body problems, 
Ergod. Th. & Dynam. Sys., to appear (
2011). | 
fulltext (doi) | 
MR 2995654[43] 
H. POLLARD, 
Celestial mechanics, 
Mathematical Association of America, Washington, D. C., 
1976. | 
MR 434057 | 
Zbl 0353.70009[45] 
D. G. SAARI, 
The manifold structure for collision and for hyperbolic-parabolic orbits in the n-body problem, 
J. Differential Equations, 
55 (
1984), 300-329. | 
fulltext (doi) | 
MR 766126 | 
Zbl 0571.70009[47] 
M. SHIBAYAMA, 
Minimizing periodic orbits with regularizable collisions in the n-body problem, 
Arch. Ration. Mech. Anal., 
199 (
2011), 821-841. | 
fulltext (doi) | 
MR 2771668 | 
Zbl 1291.70049[48] 
S. TERRACINI - 
A. VENTURELLI, 
Symmetric trajectories for the 2N-body problem with equal masses, 
Arch. Ration. Mech. Anal., 
184 (
2007), 465-493. | 
fulltext (doi) | 
MR 2299759 | 
Zbl 1111.70010[49] 
A. VENTURELLI, 
Une caractérisation variationelle des solutions de Lagrange du problème plan des trois corps, 
Comp. Rend. Acad. Sci. Paris, 
332, Série I (
2001), 641-644. | 
fulltext (doi) | 
MR 1841900 | 
Zbl 1034.70007[50] 
E. T. WHITTAKER, 
A treatise on the analytical dynamics of particles and rigid bodies: With an introduction to the problem of three bodies, 4th ed, 
Cambridge University Press (New York, 
1959), xiv+456. | 
MR 103613