Ambrosio, Luigi and Gigli, Nicola and Savarè, Giuseppe: 
Heat Flow and Calculus on Metric Measure Spaces with Ricci Curvature Bounded Below - the Compact Case
 Bollettino dell'Unione Matematica Italiana Serie 9 5 (2012), fasc. n.3, p. 575-629,  (English)
pdf (585 Kb), djvu (534 Kb).  | MR 3051737  | Zbl 1288.58016 
Referenze Bibliografiche
[2] L. AMBROSIO - N. GIGLI - A. MONDINO - G. SAVARÉ - T. RAJALA, work in progress (2012).
[3] 
L. AMBROSIO - 
N. GIGLI - 
G. SAVARÉ, 
Gradient flows in metric spaces and in the space of probability measures, 
Lectures in Mathematics ETH Zürich, 
Birkhäuser Verlag, Basel, second ed., 
2008. | 
MR 2401600 | 
Zbl 1145.35001[4] 
L. AMBROSIO - 
N. GIGLI - 
G. SAVARÉ, 
Calculus and heat flow in metric measure spaces and applications to spaces with ricci bounds from below, Arxiv 1106.2090, (
2011), 1-74. | 
MR 3060497[5] 
L. AMBROSIO - 
N. GIGLI - 
G. SAVARÉ , 
Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Arxiv 1111.3730, (
2011), 1-28. | 
fulltext (doi) | 
MR 3090143[6] 
L. AMBROSIO - 
N. GIGLI - 
G. SAVARÉ , 
Metric measure spaces with Riemannian Ricci curvature bounded from below, Arxiv 1109.0222, (
2011), 1-60. | 
fulltext (doi) | 
MR 3205729[7] 
L. AMBROSIO - 
T. RAJALA, 
Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces, To appear on 
Ann. Mat. Pura Appl. (
2012). | 
fulltext (doi) | 
MR 3158838[8] 
H. BRÉZIS, 
Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, 
North-Holland Publishing Co., Amsterdam, 
1973. 
North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). | 
Zbl 0252.47055[10] 
S. DANERI - 
G. SAVARÉ, 
Eulerian calculus for the displacement convexity in the Wasserstein distance, 
SIAM J. Math. Anal., 
40 (
2008), 1104-1122. | 
fulltext (doi) | 
MR 2452882 | 
Zbl 1166.58011[11] 
M. FUKUSHIMA, 
Dirichlet forms and Markov processes, vol. 
23 of 
North-Holland Mathematical Library, 
North-Holland Publishing Co., Amsterdam, 
1980. | 
MR 569058 | 
Zbl 0422.31007[12] 
N. GIGLI, 
On the heat flow on metric measure spaces: existence, uniqueness and stability, 
Calc. Var. Partial Differential Equations, 
39 (
2010), 101-120. | 
fulltext (doi) | 
MR 2659681 | 
Zbl 1200.35178[15] 
N. GIGLI - 
K. KUWADA - 
S. OHTA, 
Heat flow on Alexandrov spaces, To appear on 
Comm. Pure Appl. Math., (
2012). | 
fulltext (doi) | 
MR 3008226[19] 
J. HEINONEN - 
P. KOSKELA, 
A note on Lipschitz functions, upper gradients, and the Poincaré inequality, 
New Zealand J. Math., 
28 (
1999), 37-42. | 
MR 1691958 | 
Zbl 1015.46020[22] 
S. LISINI, 
Characterization of absolutely continuous curves in Wasserstein spaces, 
Calc. Var. Partial Differential Equations, 
28 (
2007), 85-120. | 
fulltext (doi) | 
MR 2267755 | 
Zbl 1132.60004[24] 
S.-I. OHTA, 
Finsler interpolation inequalities, 
Calc. Var. Partial Differential Equations, 
36 (
2009), 211-249. | 
fulltext (doi) | 
MR 2546027[28] 
T. RAJALA, 
Improved geodesics for the reduced curvature-dimension condition in branching metric spaces, 
Discrete Contin. Dyn. Syst., (
2011). to appear. | 
fulltext (doi) | 
MR 3007737[29] G. SAVARÉ , Gradient flows and evolution variational inequalities in metric spaces, In preparation, (2010).
[31] 
K.-T. STURM, 
On the geometry of metric measure spaces. I, 
Acta Math., 
196 (
2006), 65-131. | 
fulltext (doi) | 
MR 2237206