Baldi, Annalisa and Franchi, Bruno: 
Some Remarks on Vector Potentials for Maxwell's Equations in Space-Time Carnot Groups
 Bollettino dell'Unione Matematica Italiana Serie 9 5 (2012), fasc. n.2, p. 337-355,  (English)
pdf (342 Kb), djvu (186 Kb).  | MR 2977252  | Zbl 1254.35229 
Sunto
In this paper we prove a $\Gamma$-convergence result for time-depending variational functionals in a space-time Carnot group $\mathbb{R} \times \mathbb{G}$ arising in the study of Maxwell's equations in the group. Indeed, a Carnot groups $\mathbb{G}$ (a connected simply connected nilpotent stratified Lie group) can be endowed with a complex of ``intrinsic'' differential forms that provide the natural setting for a class of ``intrinsic'' Maxwell's equations. Our main results states precisely that a the vector potentials of a solution of Maxwell's equation in $\mathbb{R} \times \mathbb{G}$ is a critical point of a suitable functional that is in turn a $\Gamma$-limit of a sequence of analogous Riemannian functionals.
Referenze Bibliografiche
[1] 
A. BALDI - 
B. FRANCHI, 
Differential forms in Carnot groups: a $\Gamma$-convergence approach, 
Calc. Var. Partial Differential Equations, 
43 (1) (
2012), 211-229. | 
fulltext (doi) | 
MR 2886116 | 
Zbl 1269.58001[2] A. BALDI - B. FRANCHI, Maxwell's equations in anisotropic media and Maxwell's equations in Carnot groups as variational limits, preprinter, 2012.
[3] 
A. BALDI - 
B. FRANCHI - 
N. TCHOU - 
M. C. TESI, 
Compensated compactness for differential forms in Carnot groups and applications, 
Adv. Math., 
223 (5) (
2010), 1555-1607. | 
fulltext (doi) | 
MR 2592503 | 
Zbl 1184.43007[4] 
A. BALDI - 
B. FRANCHI - 
M. C. TESI, 
Differential Forms, Maxwell Equations and Compensated Compactness in Carnot Groups, 
Lecture Notes of Seminario Interdisciplinare di Matematica, 
7 (
2008), 21-40. | 
MR 2605146[5] 
A. BONFIGLIOLI - 
E. LANCONELLI - 
F. UGUZZONI, 
Stratified Lie groups and potential theory for their sub-Laplacians, 
Springer Monographs in Mathematics, 
Springer, Berlin, 
2007. | 
MR 2363343 | 
Zbl 1128.43001[6] 
N. BOURBAKI, 
Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, 
Actualités Sci. Ind. No. 
1285. 
Hermann, Paris, 
1960. | 
MR 271276 | 
Zbl 0199.35203[7] 
G. DAL MASO, 
An introduction to $\Gamma$-convergence, 
Progress in Nonlinear Differential Equations and their Applications, 
8, 
Birkhäuser Boston Inc., Boston, MA, 
1993. | 
fulltext (doi) | 
MR 1201152 | 
Zbl 0816.49001[8] 
H. FEDERER, 
Geometric measure theory, 
Die Grundlehren der mathematischen Wissenschaften, Band 
153, 
Springer-Verlag New York Inc., New York, 
1969. | 
MR 257325[9] 
G. B. FOLLAND - 
E. M. STEIN, 
Hardy spaces on homogeneous groups, volume 
28 of 
Mathematical Notes. 
Princeton University Press, Princeton, N.J. (
1982). | 
MR 657581[10] 
B. FRANCHI - 
R. SERAPIONI - 
C. F. SERRA, 
On the structure of finite perimeter sets in step 2 Carnot groups, 
J. Geom. Anal., 
13 (3) (
2003), 421-466. | 
fulltext (doi) | 
MR 1984849 | 
Zbl 1064.49033[15] 
M. GROMOV, 
Carnot-Carathéodory spaces seen from within. In 
Sub-Riemannian geometry, volume 
144 of 
Progr. Math. (
Birkhäuser, Basel, 
1996), 79-323. | 
MR 1421823 | 
Zbl 0864.53025[16] 
L. HÖRMANDER, 
Linear partial differential operators, 
Springer Verlag, Berlin, 
1976. | 
MR 404822[17] 
R. MELROSE, 
Propagation for the wave group of a positive subelliptic second-order differential operator. In 
Hyperbolic equations and related topics (Katata/Kyoto, 1984), 
Academic Press (Boston, MA, 
1986), 181-192. | 
MR 925249[18] 
M. RUMIN, 
Differential geometry on C-C spaces and application to the Novikov-Shubin numbers of nilpotent Lie groups, 
C. R. Acad. Sci. Paris Sér. I Math., 
329 (11) (
1999), 985-990. | 
fulltext (doi) | 
MR 1733906 | 
Zbl 0982.53029[19] 
M. RUMIN, 
Around heat decay on forms and relations of nilpotent Lie groups, In 
Séminaire de Théorie Spectrale et Géométrie, Vol. 19, Année 2000-2001, volume 
19 of 
Sémin. Théor. Spectr. Géom., pp. 123-164, Univ. Grenoble I, Saint, 
2001. | 
fulltext EuDML | 
MR 1909080 | 
Zbl 1035.58021[21] E. VENTSEL - T. KRAUTHAMMER, Thin Plates and Shells Theory: Analysis, and Applications, Marcel Dekker, Inc., New York, 2001.