Biscari, Paolo and Turzi, Stefano: 
Asymptotic Director Fields of Moving Defects in Nematic Liquid Crystals
 Bollettino dell'Unione Matematica Italiana Serie 9 5 (2012), fasc. n.1, p. 81-91,  (English)
pdf (449 Kb), djvu (153 Kb).  | MR 2919649  | Zbl 1260.82082 
Sunto
This paper deals with the detailed structure of the order-parameter field both close and far from a moving singularity in nematic liquid crystals. We put forward asymptotic expansions that allow to extract from the exact solution the necessary analytical details, at any prescribed order. We also present a simple uniform approximation, which captures the qualitative features of the exact solution in all the domain. This paper is dedicated to the memory of Carlo Cercignani, a master who will be never praised enough for both his scientific achievements and the way he taught how research is to be conducted.
Referenze Bibliografiche
[1] 
N. D. MERMIN, 
The topological theory of defects in ordered media, 
Rev. Mod. Phys., 
51 (
1979), 591-648. | 
fulltext (doi) | 
MR 541885[2] 
M. KLÉMAN, 
Defects in liquid crystals, 
Rep. Prog. Phys., 
52 (
1989), 555-654. | 
MR 1000548[4] 
G. GUIDONE-PEROLI - 
E. G. VIRGA, 
Annihilation of point defects in nematic liquid crystals, 
Phys. Rev. E, 
54 (
1996), 5235-5241. | 
fulltext (doi) | 
MR 1601519[5] 
P. BISCARI - 
G. GUIDONE-PEROLI - 
E. G. VIRGA, 
A statistical study for evolving arrays of nematic point defects, 
Liquid Crystals, 
26 (
1999), 1825-1832. | 
fulltext (doi) | 
MR 1601519[7] G. RYSKIN - M. KREMENETSKY, Drag force on a line defect moving through an otherwise undisturbed field: Disclination line in a nematic liquid crystal, Phys. Rev. Lett., 67 (1991), 1574-1577.
[8] E. I. KATS - V. V. LEBEDEV - S. V. MALININ, Disclination motion in liquid crystalline films, J. Exp. Theor. Phys., 95 (2002), 714-727.
[10] D. SVENŠEK - S. ŽUMER, Hydrodynamics of pair-annihilating disclination lines in nematic liquid crystals, Phys. Rev. E, 66 (2002), 021712.
[11] C. BLANC - D. SVENŠEK - S. ŽUMER - M. NOBILI, Dynamics of nematic liquid crystal disclinations: The role of the backflow, Phys. Rev. Lett., 95 (2005), 097802.
[13] P. BISCARI - G. GUIDONE-PEROLI - T. J. SLUCKIN, The topological microstructure of defects in nematic liquid crystals, Mol. Cryst. Liq. Cryst., 292 (1997), 91-101.
[14] 
C. BENDER - 
S. ORSZAG, 
Advanced Mathematical Methods for Scientists and Engineers, 
Springer-Verlag, New York (
1999). | 
MR 538168 | 
Zbl 0938.34001[15] 
H. BREZIS - 
J. M. CORON - 
E. LIEB, 
Harmonic maps with defects, 
Comm. Math. Phys., 
107 (
1986), 649-705. | 
MR 868739 | 
Zbl 0608.58016[16] 
M. ABRAMOWITZ - 
I. STEGUN, 
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 
Dover Publications (
1965). | 
MR 1225604