Cimatti, Giovanni: 
Functional Solutions for Fluid Flows Through Porous Media
 Bollettino dell'Unione Matematica Italiana Serie 9 5 (2012), fasc. n.1, p. 187-200,  (English)
pdf (277 Kb), djvu (109 Kb).  | MR 2919656  | Zbl 06078979 
Sunto
The Levy-Caccioppoli global inversion theorem is applied to prove the existence and uniqueness of functional solutions for a problem of flow of a viscous incompressible fluid in a porous medium when the viscosity and the thermal conductivity depend on the temperature. A method based on the Abel integral equation, for determining the dependence of the viscosity from the temperature is also proposed.
Referenze Bibliografiche
[1] N. H. ABEL, Résolution d'un problém de mécanique, Journal für die reine and angewandte Mathematik, herausgegeben von Crelle, 1, Berlin (1826), 97-101.
[2] A. AMBROSETTI - G. PRODI, Nonlinear Analysis, Cambridge University Press, 1993.
[3] 
J. BEAR, 
Dynamics of Fluids in Porous Media, 
Dover Publications, Inc. New York, 
1988. | 
Zbl 1191.76002[4] R. CACCIOPPOLI, Un principio di inversione per le corrispondenze funzionali, Atti Accad. Naz. Lincei, 16 (1932), 392-400.
[5] 
G. CIMATTI, 
On the functional solutions of a system of partial differential equations relevant in mathematical physics, 
Rend. Mat. Univ. Parma, 
10 (
2010), 423-439. | 
MR 2789450 | 
Zbl 1216.35022[10] 
M. PROTTER - 
H. WEINBERGER, 
Maximus Principle in Differential Equations, 
Springer-Verlag, New York, 
1963. | 
fulltext (doi) | 
MR 762825[12] 
F. G. TRICOMI, 
Integral Equations, 
Interscience Publishers, London 
1957. | 
MR 94665