de Marchis, Francesca: 
Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces
 Bollettino dell'Unione Matematica Italiana Serie 9 4 (2011), fasc. n.2, p. 245-257,  (English)
pdf (291 Kb), djvu (139 Kb).  | MR 2840605  | Zbl 1237.81119 
Sunto
$\rho$ belongs to $(8\pi, 4\pi^{2})$ we show under some extra assumptions that, as conjectured in [9], the functional admits at least three saddle points other than a local minimum.
Referenze Bibliografiche
[1] 
E. P. CAGLIOTI - 
P. L. LIONS - 
C. MARCHIORO - 
M. PULVIRENTI, 
A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, 
Commun. Math. Phys., 
143 (
1995), 229-260. | 
MR 1362165 | 
Zbl 0840.76002[3] 
S. Y. A. CHANG - 
M. J. GURSKY - 
P. C. YANG, 
The scalar curvature equation on 2- and 3-spheres, 
Calc. Var. and Partial Diff. Eq., 
1 (
1993), 205-229. | 
fulltext (doi) | 
MR 1261723[6] 
W. CHEN - 
C. LI, 
Prescribing Gaussian curvatures on surfaces with conical singularities, 
J. Geom. Anal., 
1-4 (
1991), 359-372. | 
fulltext (doi) | 
MR 1129348[9] 
F. DE MARCHIS, 
Multiplicity result for a scalar field equation on compact surfaces, 
Comm. Partial Differential Equations, 
33 (
2008), 2208-2224. | 
fulltext (doi) | 
MR 2475336 | 
Zbl 1165.35020[12] 
W. DING - 
J. JOST - 
J. LI - 
G. WANG, 
The differential equation $\Delta u = 8\pi - 8\pi h e^{u}$ on a compact Riemann surface, 
Asian J. Math., 
1 (
1997), 230-248. | 
fulltext (doi) | 
MR 1491984 | 
Zbl 0955.58010[16] 
M. K. H. KIESSLING, 
Statistical mechanics approach to some problems in conformal geometry. Statistical mechanics: from rigorous results to applications, 
Phys. A, 
279 (
2000), 353-368. | 
fulltext (doi) | 
MR 1797146[18] 
Y. Y. LI - 
I. SHAFRIR, 
Blow-up analysis for solutions of $-\Delta u = V e^{u}$ in dimension two, 
Ind. Univ. Math. J., 
43 (
1994), 1225-1270. | 
fulltext (doi) | 
MR 1322618 | 
Zbl 0842.35011[22] 
M. LUCIA, 
A deformation lemma with an application with a mean field equation, 
Topol. Methods Nonlinear Anal., 
30 (
2007), 113-138. | 
MR 2363657 | 
Zbl 1135.58005[23] 
A. MALCHIODI, 
Morse theory and a scalar field equation on compact surfaces, 
Adv. Diff. Eq., 
13 (
2008), 1109-1129. | 
MR 2483132 | 
Zbl 1175.53052[24] 
M. NOLASCO - 
G. TARANTELLO, 
On a sharp type-Sobolev inequality on two-dimensional compact manifolds, 
Arch. Ration. Mech. Anal., 
145 (
1998), 165-195. | 
fulltext (doi) | 
MR 1664542 | 
Zbl 0980.46022[25] 
E. H. SPANIER, 
Algebraic topology, 
Springer-Verlag, New-York, 
1966. | 
MR 210112