Angelini, Elena: 
Higher Secants of Spinor Varieties
 Bollettino dell'Unione Matematica Italiana Serie 9 4 (2011), fasc. n.2, p. 213-235,  (English)
pdf (668 Kb), djvu (186 Kb).  | MR 2840603  | Zbl 1253.15032 
Sunto
Let $S_{h}$ be the even pure spinors variety of a complex vector space $V$ of even dimension $2h$ endowed with a non degenerate quadratic form $Q$ and let $\sigma_{k}(S_{h})$ be the $k$-secant variety of $S_{h}$.  We decribe an algorithm which computes the complex dimension of $\sigma_{k}(S_{h})$.  Then, by using an inductive argument, we get our main result: $\sigma_{k}(S_{h})$ has the expected dimension except when $h \in \{7, 8\}$.  Also we provide theoretical arguments which prove that $S_{7}$ has a defective 3-secant variety and $S_{8}$ has defective 3-secant and 4-secant varieties.
Referenze Bibliografiche
[1] 
H. ABO - 
G. OTTAVIANI - 
C. PETERSON, 
Non defectivity of Grassmannians of planes, arXiv:0901.2601v1 [math.AG], to appear on 
Journal of Algebraic Geometry. | 
fulltext (doi) | 
MR 2846677 | 
Zbl 1242.14050[2] 
H. ABO - 
G. OTTAVIANI - 
C. PETERSON, 
Induction for secant varieties of Segre varieties, 
Trans. Amer. Math. Soc., 
361, no. 2 (
2009), 767-792. | 
fulltext (doi) | 
MR 2452824 | 
Zbl 1170.14036[3] 
J. ALEXANDER - 
A. HIRSCHOWITZ, 
Polinomial interpolation in several variables, 
Journal of Algebraic Geometry, 
4, n. 2 (
1995), 201-222. | 
MR 1311347 | 
Zbl 0829.14002[4] E. ANGELINI, Varietà secanti alle varietà spinoriali, Laurea Thesis, Università di Firenze (2009).
[6] 
K. BAUR - 
J. DRAISMA - 
W. DE GRAAF, 
Secant dimensions of minimal orbits: computations and conjectures, 
Experimental Mathematics, 
16, no. 2 (
2007), 239-250. | 
MR 2339279 | 
Zbl 1162.14038[8] 
C. CHEVALLEY, 
The algebraic theory of spinors, 
Columbia University Press, New York (
1954). | 
MR 60497 | 
Zbl 0057.25901[10] 
M. V. CATALISANO - 
A. V. GERAMITA - 
A. GIMIGLIANO, 
Secant varietes of $\mathbb{P}^1 \times \cdots \times \mathbb{P}^1$ (n-times) are NOT Defective for $n \geq 5''$, arXiv:0809.1701, to appear on 
Journal of Algebraic Geometry. | 
fulltext (doi) | 
MR 2762993 | 
Zbl 1217.14039[12] D. R. GRAYSON - M. E. STILLMAN, Macaulay2, Software system available at http:// www.math.uiuc.edu/Macaulay2/.
[13] 
J. M. LANDSBERG, 
The geometry of Tensors with applications, Book in preparation (
2009). | 
MR 2865915[15] 
L. MANIVEL, 
On spinor varieties and their secants, 
SIGMA 5 (
2009) 078, special volume ``Elie Cartan and Differential Geometry''. | 
fulltext (doi) | 
MR 2529169[16] 
F. L. ZAK, 
Tangents and Secants of Algebraic Varieties, 
Translations of Mathematical Monographs, 
127. 
AMS, Providence, RI, 
1993. | 
MR 1234494 | 
Zbl 0795.14018