bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Angeloni, Laura:
A Characterization of a Modulus of Smoothness in Multidimensional Setting
Bollettino dell'Unione Matematica Italiana Serie 9 4 (2011), fasc. n.1, p. 79-108, (English)
pdf (418 Kb), djvu (268 Kb). | MR 2797467 | Zbl 1237.26011

Sunto

A classical result of approximation theory states that $\lim_{\delta \to 0} \omega(f, \delta) = 0$, where $\omega$ is the modulus of smoothness of $f$ defined by means of the variation functional, if and only if $f$ is absolutely continuous. Such theorem is crucial in order to obtain results about convergence and order of approximation for linear and non-linear integral operators in BV-spaces. It was an open problem to extend the above result to the setting of $\varphi$-variation in the multidimensional frame. In this paper, working with a concept of multidimensional W-variation introduced in [3], we prove that an analogous characterization holds for the multidimensional $\varphi$-modulus of smoothness.
Referenze Bibliografiche
[1] L. ANGELONI - G. VINTI, Convergence in Variation and Rate of Approximation for Nonlinear Integral Operators of Convolution Type, Results Math., 49 (1-2) (2006), 1-23. Erratum: 57 (2010), 387-391. | fulltext (doi) | MR 2651122 | Zbl 1110.41006
[2] L. ANGELONI - G. VINTI, Approximation by means of nonlinear integral operators in the space of functions with bounded $\varphi$-variation, Differential Integral Equations, 20 (3) (2007), 339-360. Erratum: 23 (7-8) (2010), 795-799. | MR 2654270 | Zbl 1212.26016
[3] L. ANGELONI - G. VINTI, Convergence and rate of approximation for linear integral operators in $BV^\varphi$-spacces in multidimensional setting, Journal of Mathematical Analysis and Applications, 349 (2009), 317-334. | fulltext (doi) | MR 2456191 | Zbl 1154.26017
[4] L. ANGELONI - G. VINTI, Approximation with respect to Goffman-Serrin variation by means of non-convolution type integral operators, Numerical Functional Analysis and Optimization, 31 (2010), 519-548. | fulltext (doi) | MR 2682828 | Zbl 1200.41015
[5] C. BARDARO, Alcuni teoremi di convergenza per l'integrale multiplo del Calcolo delle Variazioni, Atti Sem. Mat. Fis. Univ. Modena, 31 (1982), 302-324.
[6] C. BARDARO - P. L. BUTZER - R. L. STENS - G. VINTI, Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis, 23 (2003), 299-340. | fulltext (doi) | MR 2052372 | Zbl 1049.41015
[7] C. BARDARO - J. MUSIELAK - G. VINTI, Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications (New York, Berlin, 9, 2003). | fulltext (doi) | MR 1994699
[8] C. BARDARO - S. SCIAMANNINI - G. VINTI, Convergence in $BV^\varphi(\mathbb{R})$ by nonlinear Mellin-Type convolution operators, Funct. Approx. Comment. Math., 29 (2001), 17-28. | MR 2135595 | Zbl 1075.41013
[9] C. BARDARO - G. VINTI, On convergence of moment operators with respect to $\varphi$-variation, Appl. Anal. (1991), 247-256. | fulltext (doi) | MR 1103861 | Zbl 0702.42009
[10] C. BARDARO - G. VINTI, On the order of $BV^\varphi$-approximation of convolution integrals over the line group, Comment. Math., Tomus Specialis in Honorem Iuliani Musielak (2004), 47-63. | MR 2111754 | Zbl 1068.47034
[11] J. C. BURKILL, Functions of intervals, Proc. London Math. Soc., 22 (1923), 275-310. | fulltext (doi) | MR 1575708 | Zbl 49.0177.02
[12] P. L. BUTZER - R. J. NESSEL, Fourier Analysis and Approximation, I, Academic Press (New York-London, 1971). | MR 510857 | Zbl 0217.42603
[13] L. CESARI, Sulle funzioni a variazione limitata, Ann. Scuola Norm. Sup. Pisa, 5 (1936), 299-313. | fulltext EuDML | MR 1556778 | Zbl 62.0247.03
[14] V. V. CHISTYAKOV - O. E. GALKIN, Mappings of Bounded $\Phi$-Variation with Arbitrary Function $\Phi$, J. Dynam. Control Systems, 4 (2) (1998), 217-247. | fulltext (doi) | MR 1626529 | Zbl 0940.26010
[15] E. DE GIORGI, Su una teoria generale della misura (r-1)-dimensionale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl., 36 (4) (1954), 191-213. | fulltext (doi) | MR 62214 | Zbl 0055.28504
[16] E. GIUSTI, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. | fulltext (doi) | MR 775682 | Zbl 0545.49018
[17] H. H. HERDA, Modular spaces of generalized variation, Studia Math., 30 (1968), 21-42. | fulltext EuDML | fulltext (doi) | MR 231187 | Zbl 0159.18103
[18] C. JORDAN, Sur la serie de Fourier, C. R. Acad. Sci. Paris, 92 (1881), 228-230.
[19] E. R. LOVE - L. C. YOUNG, Sur une classe de fonctionnelles linéaires, Fund. Math., 28 (1937), 243-257. | fulltext EuDML
[20] L. MALIGRANDA - W. ORLICZ, On some properties of functions of generalized variation, Mh. Math., 104 (1987), 53-65. | fulltext EuDML | fulltext (doi) | MR 903775 | Zbl 0623.26009
[21] I. MANTELLINI - G. VINTI, $\Phi$-variation and nonlinear integral operators, Atti Sem. Mat. Fis. Univ. Modena, Suppl. Vol. 46, a special issue of the International Conference in Honour of Prof. Calogero Vinti (1998), 847-862. | MR 1645758
[22] W. MATUSZEWSKA - W. ORLICZ, On Property B1 for Functions of Bounded $\varphi$-Variation, Bull. Polish Acad. Sci. Math., 35 (1-2) (1987), 57-69. | MR 894138
[23] J. MUSIELAK, Orlicz Spaces and Modular Spaces, Springer-Verlag, Lecture Notes in Math., 1034, 1983. | fulltext (doi) | MR 724434 | Zbl 0557.46020
[24] J. MUSIELAK, Nonlinear approximation in some modular function spaces I, Math. Japon., 38 (1993), 83-90. | MR 1204187 | Zbl 0779.46017
[25] J. MUSIELAK - W. ORLICZ, On generalized variations (I), Studia Math., 18 (1959), 11-41. | fulltext EuDML | fulltext (doi) | MR 104771 | Zbl 0088.26901
[26] A. R. K. RAMAZANOV, On approximation of functions in terms of $\Phi$-variation, Anal. Math., 20 (1994), 263-281. | fulltext (doi) | MR 1301164 | Zbl 0821.41009
[27] M. M. RAO - Z. D. REN, Theory of Orlicz Spaces, Monograph Textbooks Pure Appl. Math., Marcel Dekker Inc. (New York, 1991). | MR 1113700
[28] S. SCIAMANNINI - G. VINTI, Convergence and rate of approximation in $BV^\varphi(\mathbb{R})$ for a class of integral operators, Approx. Theory Appl., 17 (2001), 17-35. | fulltext (doi) | MR 1910706 | Zbl 1075.41013
[29] S. SCIAMANNINI - G. VINTI, Convergence results in $BV^\varphi(\mathbb{R})$ for a class of nonlinear Volterra-Hammerstein integral operators and applications, J. Concrete Appl. Anal., 1 (4) (2003), 287-306. | MR 2132911 | Zbl 1078.47026
[30] J. SZELMECZKA, On convergence of singular integrals in the generalized variation metric, Funct. Approx. Comment. Math., 15 (1986), 53-58. | MR 880134 | Zbl 0613.42014
[31] L. TONELLI, Su alcuni concetti dell'analisi moderna, Ann. Scuola Norm. Super. Pisa, 11 (2) (1942), 107-118. | fulltext EuDML | MR 15463
[32] C. VINTI, Perimetro-variazione, Ann. Scuola Norm. Sup. Pisa, 18 (3) (1964), 201-231. | fulltext EuDML | MR 168726
[33] C. VINTI, L'integrale di Fubini-Tonelli nel senso di Weierstrass, I - Caso parametrico, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 229-263. | fulltext EuDML | MR 231254
[34] N. WIENER, The quadratic variation of a function and its Fourier coefficients, Massachusetts J. of Math., 3 (1924), 72-94. | Zbl 50.0203.01
[35] L. C. YOUNG, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math., 67 (1936), 251-282. | fulltext (doi) | MR 1555421
[36] L. C. YOUNG, Sur une généralisation de la notion de variation de puissance pieme bornée au sens de M. Wiener, et sur la convergence des séries de Fourier, C. R. Acad. Sci. Paris, 204 (1937), 470-472. | Zbl 63.0182.03

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali