Dolera, Emanuele: 
On the Computation of the Spectrum of the Linearized Boltzmann Collision Operator for Maxwellian Molecules
 Bollettino dell'Unione Matematica Italiana Serie 9 4 (2011), fasc. n.1, p. 47-68,  (English)
pdf (335 Kb), djvu (188 Kb).  | MR 2797465  | Zbl 1251.82045 
Sunto
In this article we provide a complete and self-contained treatment of the spectrum of the linearized Boltzmann collision operator for Maxwellian molecules.
Referenze Bibliografiche
[1] 
A. V. BOBYLEV, 
The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules. 
Mathematical Physics Reviews, 
7 (
1988), 111-233. | 
MR 1128328 | 
Zbl 0850.76619[3] 
C. CERCIGNANI, 
Mathematical Methods in Kinetic Theory. 
Plenum Press, New York (
1969). | 
MR 255199 | 
Zbl 0191.25103[5] 
C. CERCIGNANI - 
M. LAMPIS - 
C. SGARRA, 
$L^2$-Stability near equilibrium of the solution of the homogeneous Boltzmann equation in the case of Maxwellian molecules. 
Meccanica, 
23 (
1988), 15-18. | 
fulltext (doi) | 
MR 980181 | 
Zbl 0667.76119[6] 
S. CHAPMAN - 
T. G. COWLING, 
The Mathematical Theory of Nonuniform Gases. 1st ed. 
Cambridge University Press, Cambridge (
1939). | 
MR 1148892 | 
Zbl 0063.00782[7] A. ERDÉLYI - W. MAGNUS - F. OBERHETTINGER - F. G. TRICOMI, Higher trascendental functions. McGraw Hill, New York (1953).
[8] 
H. GRAD, 
Asymptotic theory of the Boltzmann equation, II. 
Rarefied Gas Dynamics, 3rd Symposium (
1962), 26-59. | 
MR 156656[10] 
C. MOUHOT, 
Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. 
Comm. Math. Phys., 
261 (
2006), 629-672. | 
fulltext (doi) | 
MR 2197542 | 
Zbl 1113.82062[11] 
C. MOUHOT, 
Quantitative linearized study of the Boltzmann collision operator and applications. 
Commun. Math. Sci., 
5, suppl. 1 (
2007), 73-86. | 
fulltext (doi) | 
MR 2301289 | 
Zbl 1219.76045[12] 
A. P. PRUDNIKOV - 
YU. A. BRYCHKOV - 
O. I. MARICHEV, 
Integrals and Series. Vol. 4: Laplace Transforms. 
Gordon and Breach Science Publishers, Amsterdam (
1998). | 
MR 1162979[13] 
G. SANSONE, 
Orthogonal Functions. 
Pure and Applied Mathematics. Vol. 
IX (
1959). 
Interscience Publishers, New York. Reprinted by 
Dover Publications (
1991). | 
MR 103368[14] 
C. TRUESDELL - 
R. MUNCASTER, 
Fundamentals of Maxwell's Kinetic Theory of a Simple Monoatomic Gas. 
Academic Press, New York (
1980). | 
MR 554086[15] 
C. VILLANI, 
A review of mathematical topics in collisional kinetic theory. 
Handbook of Mathematical Fluid Dynamics, Vol. 
I (
2002), 71-305. (
S. Friedlander and 
D. Serre eds.). 
North-Holland, Amsterdam. | 
fulltext (doi) | 
MR 1942465 | 
Zbl 1170.82369[16] C. S. WANG CHANG - G. E. UHLENBECK, On the propagation of sound in monoatomic gases. Univ. of Michigan Press. Ann Arbor, Michigan. Reprinted in 1970 in Studies in Statistical Mechanics. Vol. V (1952). Edited by J. L. Lebowitz - E. Montroll, North-Holland.
[17] 
G. N. WATSON, 
A Treatise on the Thery of Bessel Functions. 2nd ed. 
Cambridge University Press, London (
1944). | 
MR 10746