bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Funagane, Hitoshi and Takata, Shigeru and Aoki, Kazuo and Kugimoto, Ko:
Poiseuille Flow and Thermal Transpiration of a Rarefied Polyatomic Gas Through a Circular Tube with Applications to Microflows
Bollettino dell'Unione Matematica Italiana Serie 9 4 (2011), fasc. n.1, p. 19-46, (English)
pdf (649 Kb), djvu (364 Kb). | MR 2797464 | Zbl 05990036

Sunto

As the first step, a rarefied polyatomic gas in a long and straight circular tube is considered, and the flow caused by a small uniform pressure gradient (Poiseuille flow) and the flow induced by a small uniform temperature gradient along the tube (thermal transpiration) are investigated, using the ellipsoidal statistical (ES) model of the Boltzmann equation for a polyatomic gas. It is shown that the solutions to these problems can be reduced to those based on the Bhatnagar-Gross-Krook (BGK) model for a monatomic gas. Numerical results of the velocity profiles, mass-flow rates, etc. for the Nitrogen gas, obtained by exploiting the existing database based on the BGK model, are shown. As the second step, a rarefied polyatomic gas in a long circular pipe is considered in the following situation: (i) the pressure and temperature variations along the pipe can be arbitrary and large; (ii) the length scale of variations is much longer than the radius of the pipe; (iii) the pipe may consist of circular tubes with different radii connected one after another. It is shown that, in this situation, the pressure distribution along the pipe is described by a macroscopic equation of diffusion type, with the diffusion coefficients consisting of the mass-flow rates of the Poiseuille flow and thermal transpiration, and an appropriate condition at the junction where the cross section changes suddenly. Then, the system is applied to a polyatomic gas flow through a single long pipe caused by a large pressure difference imposed at both ends and to a Knudsen compressor consisting of many alternately arranged thinner and thicker circular tubes.
Referenze Bibliografiche
[1] P. ANDRIES - P. LE TALLEC - J.-P. PERLAT - B. PERTHAME, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. B/Fluids, 19 (2000), 813-830. | fulltext (doi) | MR 1803856 | Zbl 0967.76082
[2] K. AOKI - P. DEGOND, Homogenization of a flow in a periodic channel of small section, Multiscale Model. Simul., 1 (2003), 304-334. | fulltext (doi) | MR 1990199 | Zbl 1107.76060
[3] K. AOKI - P. DEGOND - L. MIEUSSENS - M. NISHIOKA - S. TAKATA, Numerical simulation of a Knudsen pump using the effect of curvature of the channel, in Rarefied Gas Dynamics, M. S. Ivanov and A. K. Rebrov eds., Siberian Branch of the Russian Academy of Sciences, Novosibirsk, (2007), 1079-1084.
[4] K. AOKI - P. DEGOND - L. MIEUSSENS - S. TAKATA - H. YOSHIDA, A diffusion model for rarefied flows in curved channels, Multiscale Model. Simul., 6 (2008), 1281-1316. | fulltext (doi) | MR 2393035 | Zbl 1149.76045
[5] K. AOKI - P. DEGOND - S. TAKATA - H. YOSHIDA, Diffusion models for Knudsen compressors, Phys. Fluids, 19 (2007), 117103. | Zbl 1182.76027
[6] K. AOKI - S. TAKATA - K. KUGIMOTO, Diffusion approximation for the Knudsen compressor composed of circular tubes, in Rarefied Gas Dynamics, T. Abe ed., AIP, Melville, (2009), 953-958.
[7] P. L. BHATNAGAR - E. P. GROSS - M. KROOK, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525. | Zbl 0055.23609
[8] C. CERCIGNANI, The Boltzmann Equation and Its Applications, Springer-Verlag, Berlin (1988). | fulltext (doi) | MR 1313028 | Zbl 0646.76001
[9] C. CERCIGNANI, Rarefied Gas Dynamics, From Basic Concepts to Actual Calculations, Cambridge Univ. Press, Cambridge (2000). | MR 1744523 | Zbl 0961.76002
[10] C. CERCIGNANI - A. DANERI, Flow of a rarefied gas between two parallel plates, J. Appl. Phys., 34 (1963), 3509-3513. | MR 160603
[11] C. CERCIGNANI - F. SERNAGIOTTO, Cylindrical Poiseuille flow of a rarefied gas, Phys. Fluids, 9 (1966), 40-44.
[12] C.-C. CHEN - I.-K. CHEN - T.-P. LIU - Y. SONE, Thermal transpiration for the linearized Boltzmann equation, Commn. Pure Appl. Math., 60 (2007), 0147-0163. | fulltext (doi) | MR 2275326
[13] P. DEGOND, A model of near-wall conductivity and its application to plasma thrusters, SIAM J. Applied Math., 58 (1998), 1138-1162. | fulltext (doi) | MR 1620406 | Zbl 0924.76114
[14] P. DEGOND - V. LATOCHA - L. GARRIGUES - J. P. BOEUF, Electron transport in stationary plasma thrusters, Transp. Theory and Stat. Phys., 27 (1998), 203-221. | Zbl 0914.76095
[15] S. FUKUI - R. KANEKO, Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation including thermal creep flow, J. Tribol., 110 (1988), 253-262.
[16] Y. L. HAN - M. YOUNG - E. P. MUNTZ - G. SHIFLETT, Knudsen compressor performance at low pressures, in Rarefied Gas Dynamics, M. Capitelli ed., AIP, Melville, (2005), 162-167.
[17] M. HASEGAWA - Y. SONE, Poiseuille and thermal transpiration flows of a rarefied gas for various pipes, J. Vac. Soc. Jpn., 31 (1988), 416-419 (in Japanese).
[18] L. H. HOLWAY, Jr., Approximation procedures for kinetic theory, Ph.D. Thesis, Harvard University (1963).
[19] L. H. HOLWAY, Jr., New statistical models for kinetic theory: Methods of construction, Phys. Fluids, 9 (1966), 1658-1673.
[20] M. KNUDSEN, Eine Revision der Gleichgewichtsbedingung der Gase. Thermische Molekularströmung, Ann. Phys., 31 (1910), 205-229. | Zbl 41.0876.02
[21] M. KNUDSEN, Thermischer Molekulardruck der Gase in Röhren, Ann. Phys., 33 (1910), 1435-1448.
[22] S. K. LOYALKA, Thermal transpiration in a cylindrical tube, Phys. Fluids, 12 (1969), 2301-2305.
[23] S. K. LOYALKA - T. S. STORVICK - H. S. PARK, Poiseuille flow and thermal creep flow in long, rectangular channels in the molecular and transition flow regimes, J. Vac. Sci. Technol., 13 (1976), 1188-1192.
[24] L. MARINO, Experiments on rarefied gas flows through tubes, Microfluid Nanofluid, 6 (2009), 109-119.
[25] National Institutes of Natural Sciences and National Astronomical Observatory of Japan (eds.), Chronological Scientific Tables, Maruzen, Tokyo, (1994) (in Japanese).
[26] H. NIIMI, Thermal creep flow of rarefied gas between two parallel plates, J. Phys. Soc. Jpn., 30 (1971), 572-574.
[27] T. OHWADA - Y. SONE - K. AOKI, Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules, Phys. Fluids A, 1 (1989), 2042-2049. | fulltext (doi) | MR 1196420 | Zbl 0696.76092
[28] G. J. PRANGSMA - A. H. ALBERGA - J. J. M. BEENAKKER, Ultrasonic determination of the volume viscosity of $N_2$, $CO$, $CH_4$ and $CD_4$ between 77 and 300 K, Physica, 64 (1973), 278-288.
[29] F. SHARIPOV - G. BERTOLDO, Poiseuille flow and thermal creep based on the Boltzmann equation with the Lennard-Jones potential over a wide range of the Knudsen number, Phys. Fluids, 21 (2009), 067101. | Zbl 1183.76469
[30] F. SHARIPOV - V. SELEZNEV, Data on internal rarefied gas flows, J. Phys. Chem. Ref. Data, 27 (1998), 657-706.
[31] C. E. SIEWERT, The linearized Boltzmann equation: Concise and accurate solutions to basic flow problems, Z. angew. Math. Phys., 54 (2003), 273-303. | fulltext (doi) | MR 1967330 | Zbl 1022.76046
[32] Y. SONE, Molecular Gas Dynamics: Theory, Techniques, and Applications, Birkhäuser, Boston (2007). | fulltext (doi) | MR 2274674 | Zbl 1144.76001
[33] Y. SONE - E. ITAKURA, Analysis of Poiseuille and thermal transpiration flows for arbitrary Knudsen numbers by a modified Knudsen number expansion and their database, J. Vac. Soc. Jpn., 33 (1990), 92-94 (in Japanese).
[34] Y. SONE - K. SATO, Demonstration of a one-way flow of a rarefied gas induced through a pipe without average pressure and temperature gradients, Phys. Fluids, 12 (2000), 1864-1868. | Zbl 1184.76522
[35] Y. SONE - H. SUGIMOTO, Vacuum pump without a moving part and its performance, in Rarefied Gas Dynamics, A. Ketsdever and E. P. Muntz eds., AIP, Melville, (2003), 1041-1048.
[36] Y. SONE - Y. WANIGUCHI - K. AOKI, One-way flow of a rarefied gas induced in a channel with a periodic temperature distribution, Phys. Fluids, 8 (1996), 2227-2235. | Zbl 1027.76650
[37] Y. SONE - K. YAMAMOTO, Flow of rarefied gas through a circular pipe, Phys. Fluids, 11 (1968), 1672-1678. | Zbl 0182.28506
[38] H. SUGIMOTO - Y. SONE, Vacuum pump without a moving part driven by thermal edge flow, in Rarefied Gas Dynamics, M. Capitelli ed., AIP, Melville, (2005), 168-173.
[39] S. TAKATA - H. FUNAGANE - K. AOKI, Fluid modeling for the Knudsen compressor: Case of polyatomic gases, Kinetic and Related Models, 3 (2010), 353-372. | fulltext (doi) | MR 2646064 | Zbl 1203.82074
[40] S. TAKATA - H. SUGIMOTO - S. KOSUGE, Gas separation by means of the Knudsen compressor, Eur. J. Mech. B/Fluids, 26 (2007), 155-181. | fulltext (doi) | MR 2292272 | Zbl 1124.76048
[41] S. E. VARGO - E. P. MUNTZ, An evaluation of a multiple-stage micromechanical Knudsen compressor and vacuum pump, in Rarefied Gas Dynamics, C. Shen ed., Peking University Press, Peking, (1997), 995-1000.
[42] P. WELANDER, On the temperature jump in a rarefied gas, Ark. Fys., 7 (1954), 507-553. | MR 62041 | Zbl 0057.23301

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali