Fusi, Davide and Tironi, Andrea Luigi: 
On Rational Elliptic Surfaces with Mordell-Weil Group of Rank Five
 Bollettino dell'Unione Matematica Italiana Serie 9 3 (2010), fasc. n.2, p. 363-379,  (English)
pdf (574 Kb), djvu (294 Kb).  | MR 2666364  | Zbl 1200.14069 
Sunto
Let $E(K)$ be the Mordell-Weil group of a rational elliptic surface and let $r$ be its rank. In this note we classify all the rational elliptic surfaces with Mordell-Weil group of rank $r = 5$ over an algebraically closed field of arbitrary characteristic and using the theory of Mordell-Weil lattices, we find systems of generators for $E(K)$ in the coordinate-free situation.
Referenze Bibliografiche
[1] 
N. BOURBAKI, 
Groupes et Algèbres de Lie, Chap. 4, 5 et 6, 
Hermann, Paris, 
1968. | 
MR 573068[3] 
D. FUSI, 
Construction of linear pencils of cubic curves with Mordell-Weil rank six and seven. 
Comment. Math. Univ. St. Paul., 
55, no. 2 (
2006), 195-205. | 
MR 2294928 | 
Zbl 1132.14034[4] 
JU. MANIN, 
The Tate height of points on an Abelian variety, its invariant and applications. 
Ivz. Akad. Nauk SSSR Ser. mat., 
28 (
1964), 1363-1390; 
A.M.S. Transl. (2), 
59 (
1966), 82-110. | 
MR 173676[5] 
R. MIRANDA, 
The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica [Doctorate in Mathematical Research] 
ETS Editrice, Pisa, 
1989. | 
MR 1078016 | 
Zbl 0744.14026[6] 
K. OGUISO - 
T. SHIODA, 
The Mordell-Weil lattice of a rational elliptic surface. 
Comment. Math. Univ. St. Paul., 
40, no. 1 (
1991), 83-99. | 
MR 1104782 | 
Zbl 0757.14011[7] 
T. SHIODA, 
On the Mordell-Weil Lattices. 
Comment. Math. Univ. St. Paul., 
39, no. 2 (
1990), 211-240. | 
MR 1081832 | 
Zbl 0725.14017