Crupi, Marilena and Restuccia, Gaetana: 
Coactions of Hopf Algebras on Algebras in Positive Characteristic
 Bollettino dell'Unione Matematica Italiana Serie 9 3 (2010), fasc. n.2, p. 349-361,  (English)
pdf (326 Kb), djvu (114 Kb).  | MR 2666363  | Zbl 1216.16019 
Sunto
Let $K$ be a field of positive characteristic $p > 0$. We study the coactions of the Hopf algebra of the multiplicative group $H_{m}$ with underlying algebra $H  = K \left[ X_{1},\cdots,X_{n} \right] / (X_{1}^{p^{s_{1}}},\cdots,X_{n}^{p^{s_{n}}})$, $n \ge 1$, $s_{1}\ge \cdots \ge s_{n} \ge 1$  on a $K$-algebra $A$. We give the rule for the set of additive endomorphism of $A$, that define a coaction of $H_{m}$ on $A$ commutative. For $s_{1} = \cdots = s_{n} = 1$, we obtain the explicit expression of such coactions in terms of $n$ derivations of $A$.
Referenze Bibliografiche
[1] 
V. BONANZINGA - 
H. MATSUMURA, 
$F_{m}$-integrable derivations, 
Communications in Algebra, 
25 (12) (
1997), 4039-4046. | 
fulltext (doi) | 
MR 1481587[2] 
M. CRUPI, 
Subring of constants of a ring of cha caracteristic $p > 0$, 
Le matematiche, 
XLVIII, No 2 (
1993), 203-212. | 
MR 1320663 | 
Zbl 0836.13003[3] 
H. MATSUMURA, 
Commutative Algebra, 2nd ed., 
Benjamin Inc. (New York, 
1980). | 
MR 575344[5] 
S. MONTGOMERY, 
Hopf algebras and their actions on Rings, 
CBSM, Lecture notes, 
82, 
AMS, 
1993. | 
fulltext (doi) | 
MR 1243637[8] G. RESTUCCIA - H.-J. SCHNEIDER, On actions of the additive group on the Weyl algebra, Atti dell'Accademia Peloritana dei Pericolanti di Messina, Classe di Scienze Matematiche, Fisiche e Naturali, LXXXIII. ISSN: 0365-0359. C1A0501007.
[9] 
G. RESTUCCIA - 
A. TYC, 
Regularity of the ring of invariants under certain actions of finite abelian Hopf algebras in characteristic $p > 0$, 
J. of Algebra, 
159 , No. 2 (
1993), 347-357. | 
fulltext (doi) | 
MR 1231218 | 
Zbl 0814.16037[11] 
A. TYC, 
$p$-basis and smoothness in characteristc $p > 0$, 
Proc. Am. Math. Soc., 
103 (
1998), 389-394. | 
fulltext (doi) | 
MR 943051[12] 
W. C. WATERHOUSE, 
Introduction to Affine Group Schemes, in: 
Grad Texts in Math., Vol 
66 (
Springer, 
1979). | 
MR 547117