Ciliberto, C. and Sernesi, E.: 
Projective Geometry Related to the Singularities of Theta Divisors of Jacobians
 Bollettino dell'Unione Matematica Italiana Serie 9 3 (2010), fasc. n.1, p. 93-109,  (English)
pdf (414 Kb), djvu (159 Kb).  | MR 2605913  | Zbl 1203.14064 
Sunto
By studying the higher order focal properties of a family of linear spaces naturally associated to the singular locus of the theta divisor of a non-hyperelliptic jacobian of genus $g \ge 5$, we give a new proof of the classical theorem of Torelli. Related questions and open problems are also discussed.
Referenze Bibliografiche
[1] 
A. ANDREOTTI - 
A. MAYER, 
On period relations for abelian integrals on algebraic curves, 
Ann. Scuola Norm. Sup. Pisa, 
21 (3) (
1967), 189-238. | 
fulltext EuDML | 
MR 220740 | 
Zbl 0222.14024[2] 
E. ARBARELLO - 
M. CORNALBA - 
PH. GRIFFITHS - 
J. HARRIS, 
Geometry of algebraic curves, Volume 
I, 
Grundlehren der math. Wisensch, 
267 (
Springer-Verlag, 
1984). | 
fulltext (doi) | 
MR 2807457[5] 
C. CILIBERTO - 
G. VAN DER GEER, 
Andreotti-Mayer Loci and the Schottky Problem, 
Documenta Math., 
13 (
2008), 453-504. | 
fulltext EuDML | 
MR 2520473[6] 
C. CILIBERTO - 
E. SERNESI, 
Singularities of the theta divisor and congruences of planes, 
J. Algebraic Geom., 
1 (
1992), 231-250. | 
MR 1144438 | 
Zbl 0787.14019[7] 
C. CILIBERTO - 
E. SERNESI, 
Singularities of the Theta Divisor and Families of Secant Spaces to a Canonical Curve, 
J. Algebra, 
171 (
1995), 867-893. | 
fulltext (doi) | 
MR 1315925 | 
Zbl 0827.14016[13] 
B. SEGRE, 
Sulle $V_{n}$ contenenti più di $\infty^{n-k}S_{k}$, Nota II, 
Rend. Accad. Naz. Lincei, 
5 (8) (
1948), 275-280. | 
MR 36042[14] 
C. SEGRE, 
Sui fochi di 2° ordine dei sistemi infiniti di piani, e sulle curve iperspaziali con una doppia infinità di piani plurisecanti. 
Atti R. Accad. Lincei, 
30 (5) (
1921), 67-71. | 
Zbl 48.0849.02