Kinnunen, J. and Kotilainen, M. and Latvala, V.: 
Hardy-Littlewood Type Gradient Estimates for Quasiminimizers
 Bollettino dell'Unione Matematica Italiana Serie 9 3 (2010), fasc. n.1, p. 125-136,  (English)
pdf (272 Kb), djvu (109 Kb).  | MR 2605915  | Zbl 1205.35005 
Sunto
We prove Hardy-Littlewood type integral estimates for quasiminimizers in the unit ball of the Euclidean n-space. These extend known results for planar analytic functions to a more general class of functions. Our results can be regarded as weighted Caccioppoli and Poincaré inequalities for quasiminimizers.
Referenze Bibliografiche
[1] 
J. ARAZY - 
S. D. FISHER - 
S. JANSON - 
J. PEETRE, 
Membership of Hankel Operators on the ball in unitary ideals, 
J. London Math. Soc., 
43, no. 2 (
1991), 485-508. | 
fulltext (doi) | 
MR 1113389 | 
Zbl 0747.47019[3] 
E. DI BENEDETTO, 
$C^{1,\alpha}$ local regularity of weak solutions of degenerate elliptic equations, 
Nonlinear Anal., 
7 (
1983), 827-850. | 
fulltext (doi) | 
MR 709038[4] 
E. DI BENEDETTO - 
N. S. TRUDINGER, 
Harnack inequality for quasi-minima of variational integrals, 
Annales de l'Institut H. Poincaré: Analyse Nonlinéaire, 
1 (
1984), 295-308. | 
fulltext EuDML | 
MR 778976[5] 
L. C. EVANS, 
A new proof of local $C^{1,\alpha}$ regularity for solutions of certain degenerate elliptic p.d.e., 
J. Differential Equations, 
45 (
1982), 356-373. | 
fulltext (doi) | 
MR 672713 | 
Zbl 0508.35036[6] 
S-L. ERIKSSON - 
M. KOTILAINEN - 
V. LATVALA, 
Hyperbolic harmonic functions: weak approach with applications in function spaces, 
Adv. Appl. Clifford Algebr., 
17, no. 3 (
2007), 425-436. | 
fulltext (doi) | 
MR 2350589 | 
Zbl 1130.30018[7] 
T. M. FLETT, 
The dual of an inequality of Hardy and Littlewood and some related inequalities, 
J. Math. Anal. Appl., 
38 (
1972), 746-765. | 
fulltext (doi) | 
MR 304667 | 
Zbl 0246.30031[8] 
M. GIAQUINTA - 
G. MODICA, 
Regularity results for some classes of higher order nonlinear elliptic systems, 
J. Reine Angew. Math., 
311/312 (
1979), 145-169. | 
fulltext EuDML | 
MR 549962 | 
Zbl 0409.35015[10] 
S. GRELLIER - 
P. JAMING, 
Harmonic functions on the real hyperbolic ball II. Hardy-Sobolev and Lipschitz spaces, 
Math. Nachr., 
268 (
2004), 50-73. | 
fulltext (doi) | 
MR 2054532 | 
Zbl 1051.43004[11] 
J. HEINONEN - 
T. KILPELÄINEN - 
O. MARTIO, 
Nonlinear potential theory of degenerate elliptic equations, 
Oxford University Press, Oxford, 
1993. | 
MR 1207810[12] 
G. H. HARDY - 
J. E. LITTLEWOOD - 
G. PÓLYA, 
Inequalities, 
University Press, Cambridge, 
1978. | 
MR 197653[14] 
V. LATVALA, 
BMO-invariance of quasiminimizers, 
Ann. Acad. Sci. Fenn. Math., 
29, no. 2 (
2004), 407-418. | 
fulltext EuDML | 
MR 2097241[16] 
J. MALÝ - 
W. P. ZIEMER, 
Fine regularity of solutions of elliptic partial differential equations, 
American Mathematical Society, Providence, RI, 
1997. | 
fulltext (doi) | 
MR 1461542[17] 
M. STOLL, 
Invariant potential theory in the unit ball of $C^{n}$. 
London Mathematical Society, 
Lecture Note Series 199. 
Cambridge University Press, Cambridge, 
1994. | 
fulltext (doi) | 
MR 1297545[19] 
W. P. ZIEMER, 
A Poincaré-type inequality for solutions of elliptic differential equations, 
Proc. Amer. Math. Soc., 
97 (
1986), 286-290. | 
fulltext (doi) | 
MR 835882 | 
Zbl 0601.35034