Ilardi, Giovanna and Supino, Paola and Vallès, Jean: 
Geometry of Syzygies via Poncelet Varieties
 Bollettino dell'Unione Matematica Italiana Serie 9 2 (2009), fasc. n.3, p. 579-589,  (English)
pdf (163 Kb), djvu (106 Kb).  | MR 2569292  | Zbl 1197.13013 
Sunto
We consider the Grassmannian $\mathbb{G}r(k,n)$ of $(k+1)$-dimensional linear subspaces of $V_{n} = H^{0} (\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}_{1}} (n))$. We define $\mathfrak{X}_{k,r,d}$ as the classifying space of the $k$-dimensional linear systems of degree $n$ on $\mathbb{P}^{1}$, whose bases realize a fixed number $r$ of polynomial relations of fixed degree $d$, say $r$ syzygies of degree $d$. Firstly, we compute the dimension of $\mathfrak{X}_{k,r,d}$. In the second part we make a link between $\mathfrak{X}_{k,r,d}$ and the Poncelet varieties. In particular, we prove that the existence of linear syzygies implies the existence of singularities on the Poncelet varieties.
Referenze Bibliografiche
[4] 
L. RAMELLA, 
La stratification du schema de Hilbert des courbes rationnelles de $\mathbb{P}^{n}$ par le fibré tangent restreint, 
C.R. Acad. Sci. Paris, 
311 (
1990), 181-184. | 
MR 1065888 | 
Zbl 0721.14014[6] 
G. TRAUTMANN, 
Poncelet curves and associated theta characteristics, 
Expositiones Math., 
6 (
1988), 29-64. | 
MR 927588 | 
Zbl 0646.14025[7] 
J. VALLÈS, 
Fibrés de Schwarzenberger et coniques de droites sauteuses, 
Bull. Soc. Math. France, 
128, no. 3 (
2000), 433-449. | 
fulltext EuDML | 
MR 1792477