The question of Lipschitz continuity of solutions to parameterized variational inequalities with perturbed constraint sets is considered. Under the sole Lipschitz continuity assumption on data, a Lipschitz continuity result is proved which, in particular, holds for variational inequalities modeling evolutionary network equilibrium problems. Moreover, in view of real-life applications, a long-term memory is introduced and the corresponding variational inequality model is discussed.
Referenze Bibliografiche
[1] 
A. ARÓS - 
M. SOFONEA - 
J. M. VIAÑO, 
A class of evolutionary variational inequalities with Volterra-type term, 
Math. Models Methods Appl. Sci., 
14, No. 4 (
2004), 557-577. | 
fulltext (doi) | 
MR 2046578 | 
Zbl 1077.74035[2] 
A. BARBAGALLO, 
Regularity results for evolutionary nonlinear variational and quasi-variational inequalities with applications to dynamic equilibrium problems, 
J. Global Optim., 
40, No. 1-3 (
2008). | 
fulltext (doi) | 
MR 2373537 | 
Zbl 1149.49032[3] L. BOLTZMANN, Zur Theorie der elastischen Nachwirkung, Sitzber. Kaiserl. Akad. Wiss. Wien, Math.-Naturw. Kl., 70, Sect. II (1874), 275-300.
[4] M. J. BECKMAN - J. P. WALLACE, Continuous lags and the stability of market equilibrium, Economica, New Series, 36, No. 141 (1969), 58-68.
[5] 
L. BOLTZMANN, 
Zur Theorie der elastischen Nachwirkung, 
Ann. Phys. u. Chem., 
5 (
1878), 430-432. | 
Zbl 10.0670.01[9] 
P. DANIELE - 
A. MAUGERI, 
Variational inequalities and discrete and continuum models of network equilibrium problems, 
Math. Comput. Model., 
35 (
2002), 689-708. | 
fulltext (doi) | 
MR 1884027 | 
Zbl 0994.90033[10] 
P. DANIELE - 
F. GIANNESSI - 
A. MAUGERI (Eds.), 
Equilibrium problems and variational models, 
Kluwer Academic Publishers (
2003). | 
fulltext (doi) | 
MR 2026132[11] 
P. DANIELE, 
Dynamic networks and evolutionary variational inequalities, 
Edward Elgar Publishing (
2006). | 
MR 2273417 | 
Zbl 1117.49002[12] 
P. DANIELE - 
S. GIUFFRÈ, 
General infinite dimensional duality and applications to evolutionary network equilibrium problems, 
Optim. Lett., 
1, No. 3 (
2007), 227-243. | 
fulltext (doi) | 
MR 2340691 | 
Zbl 1151.90577[14] 
F. FACCHINEI - 
J. S. PANG, 
Finite-dimensional variational inequalities and complementarity problems, 
Springer, New York (
2003). | 
MR 1955649 | 
Zbl 1062.90001[15] 
A. V. FIACCO - 
G. P. MCCORMICK, 
Nonlinear programming: sequential unconstrained minimization techniques, 
Wiley, New York (
1968). | 
MR 243831 | 
Zbl 0193.18805[17] 
A. V. FIACCO, 
An introduction to sensitivity and stability analysis in Nonlinear programming, 
Academic Press, New York (
1983). | 
MR 721641 | 
Zbl 0543.90075[18] 
G. FICHERA, 
Integro-differential problems of hereditary elasticity, 
Atti Sem. Mat. Fis. Univ. Modena, 
XXVI (
1977), 363-370. | 
MR 532388 | 
Zbl 0407.73005[19] 
F. GIANNESSI - 
A. MAUGERI (Eds.), 
Variational inequalities and network equilibrium problems, 
Plenum Publishing, New York (
1995). | 
fulltext (doi) | 
MR 1331396[20] 
F. GIANNESSI - 
A. MAUGERI - 
P. PARDALOS (Eds.), 
Equilibrium problems: non-smooth optimization and variational inequality models, 
Kluwer Academic Publishers, Dordrecht, The Netherlands (
2001). | 
MR 2030621[21] 
F. GIANNESSI - 
A. MAUGERI, 
Preface [Special issue on the 
Proeceedings of the First AMS-UMI Joint Meeting], 
J. Global Optim., 
28, No. 3-4 (
2004). | 
fulltext (doi) | 
MR 2072682[22] F. GIANNESSI - A. MAUGERI (Eds.), Variational inequalities and applications, Springer, New York (2005).
[23] 
J. GWINNER, 
Time-dependent variational inequalities. Some recent trends. In 
Daniele P., 
Giannessi F. and 
Maugeri A. (Eds.), 
Equilibrium problems and variational models, 
Academic Publishers, Dordrecht, The Netherlands (
2003), 225-264. | 
fulltext (doi) | 
MR 2043474 | 
Zbl 1069.49005[24] 
J. HEINONEN, 
Lectures on Lipschitz analysis. In 
Lectures at the 14th Jyväskylä Summer School (August, 
2004). | 
MR 2177410 | 
Zbl 1086.30003[26] 
D. KINDERLEHER - 
G. STAMPACCHIA, 
An introduction to variational inequalities and their applications, 
Academic Press, New York (
1980). | 
MR 567696[27] 
J. KYPARISIS, 
Uniqueness and differentiability of solutions of parametric nonlinear complementarity problems, 
Math. Program., 
36 (
1986), 105-113. | 
fulltext (doi) | 
MR 862072 | 
Zbl 0613.90096[29] 
J. KYPARISIS, 
Sensitivity analysis for variational inequalities and nonlinear complementarity problems, 
Ann. Oper. Res., 
27 (
1990), 143-174. | 
fulltext (doi) | 
MR 1088991 | 
Zbl 0723.90075[30] 
J. L. LIONS - 
G. STAMPACCHIA, 
Variational inequalities, 
Comm. Pure Appl. Math., 
22 (
1967) 493-519. | 
fulltext (doi) | 
MR 216344[31] 
A. MAUGERI, 
Variational and quasi-variational inequalities and applications to optmization problems in networks, 
Boll. Un. Mat. Ital. B, 
7, No. 4 (
1990), 327-343. | 
MR 1061221 | 
Zbl 0705.90023[32] 
A. MAUGERI, 
Dynamic Models and generalized equilibrium problems. In 
Giannessi F. (Ed.), 
New Trends in Mathematical Programming, 
Kluwer Academic Publishers (
1998), 191-202. | 
fulltext (doi) | 
MR 1641319 | 
Zbl 0908.90120[33] 
A. MAUGERI - 
C. VITANZA, 
Time-dependent equilibrium problems. In 
Migdalos A., 
Pardalos P. and 
Pitsoulis L. (Eds.), 
Pareto Optimality Game Theory and Equilibria, 
Springer (
2008), 505-524. | 
fulltext (doi) | 
MR 2441391 | 
Zbl 1191.49009[34] 
B. MORDUKHOVICH, 
Variational analysis and generalized differentiation (
Springer-Verlag , 
2006). | 
MR 2191745[37] 
S. M. ROBINSON, 
Generalized equations and their solutions, part II: applications to nonlinear programming, 
Math. Programming Stud., 
19 (
1982), 200-221. | 
fulltext (doi) | 
MR 669732 | 
Zbl 0495.90077[38] S. M. ROBINSON, Implicit B-Differentiability in generalized equations, Technical Summary Report 2854, Mathematics Research center, University of Wisconsin, Madison, WI (1985).
[43] 
A. SHAPIRO, 
Sensitivity analysis of nonlinear programs and differentiability properties of metric projections, 
SIAM J. Control Optim., 
26 (
1988), 628-645. | 
fulltext (doi) | 
MR 937676 | 
Zbl 0647.90089[45] M. J. SMITH, A new dynamic traffic model and the existence and calculation of dynamic user equilbria on congested capacity-constrained road networks, Transportation Res. B, 27B, No. 1 (1993), 49-63.
[46] 
J. STEINBACH, 
On a variational inequality containing a memory term with an application in electro-chemical machining, 
J. Convex Anal., 
5, No. 1 (
1998), 63-80. | 
fulltext EuDML | 
MR 1649441 | 
Zbl 0908.49011[48] 
V. VOLTERRA, 
Sulle equazioni integro-differenziali della teoria della elasticità, 
Rend. Acc. Naz. Lincei, 
XVIII, No. 2 (
1909), 295-301. | 
Zbl 40.0870.01[49] 
V. VOLTERRA, 
Sulle equazioni integro-differenziali della elasticità nel caso della entropia, 
Rend. Acc. Naz. Lincei, 
XVIII, No. 2 (
1909), 577-586. | 
Zbl 40.0871.01[51] J. G. WARDROP, Some theoretical aspects of road traffic research. In Proceedings of the Institute of Civil Engineers, Part II (1952), 325-378).
[52] 
N. D. YEN, 
Hölder continuity of solutions to a parametric variational inequality, 
Appl. Math. Optim., 
31 (
1995), 245-255. | 
fulltext (doi) | 
MR 1316259[53] 
N. D. YEN, 
Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint, 
Math. Oper. Res., 
20 (
1995), 695-708. | 
fulltext (doi) | 
MR 1354777 | 
Zbl 0845.90116