Cruz-Uribe, D. and Diening, L. and Fiorenza, A.: 
A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces
 Bollettino dell'Unione Matematica Italiana Serie 9 2 (2009), fasc. n.1, p. 151-173,  (English)
pdf (322 Kb), djvu (197 Kb).  | MR 2493649  | Zbl 1207.42011 
Sunto
We give a new proof using the classic Calderón-Zygmund decomposition that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue space $L^{p(\cdot)}$ whenever the exponent function $p(\cdot)$ satisfies log-Hölder continuity conditions. We include the case where $p(\cdot)$ assumes the value infinity. The same proof also shows that the fractional maximal operator $M_{a}$, $0 < a < n$, maps $L^{p(\cdot)}$ into $L^{q(\cdot)}$, where $1/p(\cdot) - 1/q(\cdot) = a/n$.
Referenze Bibliografiche
[1] 
C. BENNETT - 
R. SHARPLEY, 
Interpolation of operators, volume 
129 of 
Pure and Applied Mathematics. 
Academic Press Inc. (Boston, MA, 
1988). | 
MR 928802 | 
Zbl 0647.46057[4] 
D. CRUZ-URIBE - 
A. FIORENZA - 
C. J. NEUGEBAUER, 
The maximal function on variable $L^{p}$ spaces. 
Ann. Acad. Sci. Fenn. Math., 
28, 1 (
2003), 223-238. See errata [5]. | 
fulltext EuDML | 
MR 1976842 | 
Zbl 1037.42023[5] 
D. CRUZ-URIBE - 
A. FIORENZA - 
C. J. NEUGEBAUER, 
Corrections to: "The maximal function on variable $L^{p}$ spaces" [Ann. Acad. Sci. Fenn. Math., 28, no. 1 (2003), 223- 238]. 
Ann. Acad. Sci. Fenn. Math., 
29, 1 (
2004), 247-249. | 
fulltext EuDML | 
MR 2041952 | 
Zbl 1037.42023[8] L. DIENING, Habilitation, Universität Freiburg, 2007.
[9] 
L. DIENING - 
P. HARJULEHTO - 
P. HÄSTO - 
Y. MIZUTA - 
T. SHIMOMURA, 
Maximal functions in variable exponent spaces: limiting cases of the exponent. Preprint, 
2007. | 
MR 2553809[10] L. DIENING - P. HÄSTO - A. NEKVINDA, Open problems in variable exponent Lebesgue and Sobolev spaces. In FSDONA04 Proceedings (Drabek and Rakosnik (eds.); Milovy, Czech Republic, pages 38-58. Academy of Sciences of the Czech Republic (Prague, 2005).
[11] 
J. DUOANDIKOETXEA, 
Fourier analysis, volume 
29 of 
Graduate Studies in Mathematics. 
American Mathematical Society, Providence, RI, 
2001. | 
MR 1800316[13] 
J. GARCÍA-CUERVA - 
J. L. RUBIO DE FRANCIA, 
Weighted norm inequalities and related topics, volume 
116 of 
North-Holland Mathematics Studies (
North-Holland Publishing Co., Amsterdam, 
1985). | 
MR 807149 | 
Zbl 0578.46046[14] 
V. KOKILASHVILI - 
S. SAMKO, 
On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent. 
Z. Anal. Anwendungen, 
22, 4 (
2003), 899-910. | 
fulltext (doi) | 
MR 2036935 | 
Zbl 1040.42013[15] 
O. KOVÁČIK - 
J. RÁKOSNÍK, 
On spaces $L^{p(x)}$ and $W^{k,p(x)}$. 
Czechoslovak Math. J., 
41, 
116 (4) (
1991), 592-618. | 
fulltext EuDML | 
MR 1134951[21] 
L. PICK - 
M. RŮŽIČKA, 
An example of a space $L^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded. 
Expo. Math., 
19, 4 (
2001), 369-371. | 
fulltext (doi) | 
MR 1876258 | 
Zbl 1003.42013[22] 
S. SAMKO, 
On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. 
Integral Transforms Spec. Funct., 
16, 5-6 (
2005), 461-482. | 
fulltext (doi) | 
MR 2138062 | 
Zbl 1069.47056