The main topic of this paper is the interaction between vortex density waves and high-frequency second sound in counterflow superfluid turbulence. To this end a thermodynamical model including vortex flux as independent variable is considered. This choice is crucial for the study of the transition of the behavior of the vortex-density perturbations from diffusive to propagative, which is necessary to interpret the details of the high-frequency second sound waves.
Referenze Bibliografiche
[1] R. J. DONNELLY, Quantized Vortices in Helium II, Cambridge University Press, Cambridge, (1991).
[2] 
C. F. BARENGHI - 
R. J. DONNELLY - 
W. F. VINEN (eds), 
Quantized Vortex Dynamics and Superfluid Turbulence, 
Springer, Berlin, (
2001). | 
Zbl 0972.00023[3] S. K. NEMIROVSKII - W. FISZDON, Chaotic quantized vortices and hydrodynamic processes in superfluid helium, Rev. Mod. Phys., 67 (1995), 37-84.
[4] L. TISZA, Transport phenomena in He II, Nature, 141 (London, 1938), 913.
[5] 
L. D. LANDAU, 
The theory of superfluidity of He II, 
J. Phys., 
5 (
1941), 71. | 
Zbl 0027.18505[6] 
I. M. KHALATNIKOV, 
An Introduction to the Theory of Superfluidity, 
Addison-Wesley, Redwood City (
1989). | 
MR 1084373[7] D. JOU - G. LEBON - M. S. MONGIOVÌ, Second sound, superfluid turbulence and intermittent effects in liquid helium II, Phys. Rev. B, 66 (2002), 9.
[8] W. F. VINEN, Mutual friction in a heat current in liquid helium II. III. Theory of the mutual friction, Proc. R. Soc., A 240 (London, 1957), 493-515.
[9] W. F. VINEN - J. J. NIEMELA, Quantum Turbulence, J. Low Temp. Phys., 128 (2002), 167.
[10] C. F. BARENGHI, Classical aspects of quantum turbulence, J. Phys. Cond. Matter, 11 (1999), 7751.
[11] 
M. S. MONGIOVÌ - 
D. JOU, 
A thermodynamical derivation of a hydrodinamical model of inhomogeneous superfluid turbulence, 
Phys. Rev. B, 
75 (
2007), 14. | 
fulltext (doi) | 
MR 2367591[12] D. JOU - M. S. MONGIOVÌ - M. SCIACCA, Vortex density waves in a hydrodinamical model of superfluid turbulence, Phys. Lett. A, 368 (2007), 7.
[14] 
I. MÜLLER - 
T. RUGGERI, 
Extended Thermodynamics, 
Springer-Verlag (New York, 
1993), 
Rational Extended Thermodynamics, 
Springer-Verlag (New York, 
1998). | 
fulltext (doi) | 
MR 1632151[15] 
M. SCIACCA - 
M. S. MONGIOVÌ - 
D. JOU, 
A mathematical model of counterflow superfluid turbulence describing heat waves and vortex-density waves, 
Mathematical and Computer Modelling 48 (
2008), 206-221. | 
fulltext (doi) | 
MR 2431334 | 
Zbl 1145.82361[16] K. W. SCHWARZ, Generating superfluid turbulence from simple dynamical rules, Phys. Rev. Lett., 49 (1982), 283-285.
[17] K. W. SCHWARZ, Three-dimensional vortex dynamics in superfluid 4He, I. Line-line and line boundary interactions, Phys. Rev. B, 31 (1985), 5782-5804.
[18] K. W. SCHWARZ, Three-dimensional vortex dynamics in superfluid 4He, Phys. Rev. B, 38 (1988), 2398-2417.
[19] D. JOU - M. S. MONGIOVÌ, Description and evolution of anisotropy in superfluid vortex tangles with counterflow and rotation, Phys. Rev. B, 74 (2006), 11.
[20] M. S. MONGIOVÌ, Extended Irreversible Thermodynamics of Liquid Helium II, Phys. Rev. B, 48 (1993), 6276-6283.
[21] R. A. PERUZZA - M. SCIACCA, Waves propagation in turbulent superfluid helium in presence of combined rotation and counterflow, Physica B, 398 (2007), 8-17.
[22] D. D. AWSCHALOM - F. P. MILLIKEN - K. W. SCHWARZ, Properties of superfluid turbulence in a large channel, Phys. Rev. Lett., 53 (1984), 1372-1375.