Bisi, Marzia: 
Reaction-Diffusion Equations for Chemically Reacting Gas Mixtures
 Bollettino dell'Unione Matematica Italiana Serie 9 1 (2008), fasc. n.3, p. 805-817,  (English)
pdf (449 Kb), djvu (137 Kb).  | MR 2455346  | Zbl 1196.35123 
Sunto
In this paper we aim at describing the hydrodynamic limit of a mixture of chemically reacting gases. Starting from kinetic Boltzmann-type equations, we derive Grad's 13-moments equations for single species. Then, after scaling such equations in terms of a suitable Knudsen number, we apply an asymptotic Chapman-Enskog procedure in order to build up hydrodynamic equations of Navier-Stokes type.
Referenze Bibliografiche
[2] 
M. BISI - 
M. GROPPI - 
G. SPIGA, 
Grad's distribution functions in the kinetic equations for a chemical reaction, 
Continuum Mech. Thermodyn., 
14 (
2002), 207-222. | 
fulltext (doi) | 
MR 1896837 | 
Zbl 0996.76093[4] 
M. BISI - 
M. GROPPI - 
G. SPIGA, 
Kinetic Modelling of Bimolecular Chemical Reactions, in "
Kinetic Methods for Nonconservative and Reacting Systems", (
G. Toscani Ed.), "
Quaderni di Matematica" [Mathematics Series], 
Aracne Editrice, Roma, 
16 (
2005), 1-143. | 
MR 2244535 | 
Zbl 1121.82032[5] 
M. BISI - 
G. SPIGA, 
Diatomic gas diffusing in a background medium: kinetic approach and reaction-diffusion equations, 
Commun. Math. Sci., 
4 (
2006), 779-798. | 
MR 2264820 | 
Zbl 1120.82011[6] 
C. CERCIGNANI, 
Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations, 
Cambridge University Press, Cambridge (
2000). | 
MR 1744523 | 
Zbl 0961.76002[7] 
S. CHAPMAN - 
T. G. COWLING, 
The mathematical theory of non-uniform gases, 
Springer, New York (
1994). | 
MR 116537 | 
Zbl 0063.00782[8] 
A. DE MASI - 
P. A. FERRARI - 
J. L. LEBOWITZ, 
Reaction-diffusion equations for interacting particle systems, 
J. Stat. Phys., 
44 (
1986), 589-644. | 
fulltext (doi) | 
MR 857069 | 
Zbl 0629.60107[9] 
L. DESVILLETTES - 
R. MONACO - 
F. SALVARANI, 
A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, 
Eur. J. Mech. B Fluids, 
24 (
2005), 219-236. | 
fulltext (doi) | 
MR 2118066 | 
Zbl 1060.76100[11] 
M. GROPPI - 
G. SPIGA, 
Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, 
J. Math. Chem., 
26 (
2000), 197-219. | 
Zbl 1048.92502[12] 
M. GROPPI - 
G. SPIGA, 
Kinetic theory of a chemically reacting gas with inelastic transitions, 
Trans. Th. Stat. Phys., 
30 (
2001), 305-324. | 
Zbl 1174.82327[13] 
W. KOLLER - 
F. SCHÜRRER, 
Conservative solution methods for extended Boltzmann equations, 
Riv. Mat. Univ. Parma, (6) 
4* (
2001), 109-169. | 
MR 1881106 | 
Zbl 1005.82023[14] 
J. POLEWCZAK, 
A review of the kinetic modelings for non-reactive and reactive dense fluids, 
Riv. Mat. Univ. Parma, (6) 
4* (
2001), 23-55. | 
MR 1881104 | 
Zbl 1009.82018[15] 
I. PRIGOGINE - 
E. XHROUET, 
On the perturbation of Maxwell distribution function by chemical reactions in a gas, 
Physica, 
15 (
1949), 913-932. | 
Zbl 0037.41003[16] 
A. ROSSANI - 
G. SPIGA, 
A note on the kinetic theory of chemically reacting gases, 
Physica A, 
272 (
1999), 563-573. | 
fulltext (doi) | 
MR 1730976[17] 
B. SHIZGAL - 
M. KARPLUS, 
Non-equilibrium contributions to the rate of reaction. Perturbation of the velocity distribution function, 
J. Chem. Phys., 
52 (
1970), 4262- 4278. | 
fulltext (doi) | 
MR 273964[18] 
R. SPIGLER - 
D. H. ZANETTE, 
Asymptotic analysis and reaction-diffusion approximation for BGK kinetic models of chemical processes in multispecies gas mixtures, 
J. Appl. Math. Phys. (ZAMP), 
44 (
1993), 812-827. | 
fulltext (doi) | 
MR 1241634 | 
Zbl 0784.76108[19] 
D. H. ZANETTE, 
Linear and nonlinear diffusion and reaction-diffusion equations from discrete-velocity kinetic models, 
J. Phys. A: Math. Gen., 
26 (
1993), 5339-5349. | 
MR 1248718 | 
Zbl 0808.60073