bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Delitala, Marcello:
On the Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach
Bollettino dell'Unione Matematica Italiana Serie 9 1 (2008), fasc. n.3, p. 603-618, (English)
pdf (490 Kb), djvu (159 Kb). | MR 2455334 | Zbl 1188.92002

Sunto

This paper deals with the mathematical modelling, based on the kinetic theory of active particles, of a complex biological living system constituted by different populations of cells. The modelling refers to the competition between immune and tumor cells. Moreover, a qualitative and quantitative analysis is developed, to show how the models can describe several interesting phenomena related to biological applications. A final section highlights further research perspectives related to the modelling of genetic mutations.
Referenze Bibliografiche
[1] N. BELLOMO, Modelling complex living systems. A kinetic theory and stocastic game approach, Birkhauser, Boston, (2008). | MR 2359781 | Zbl 1140.91007
[2] N. BELLOMO - N. K. LI - P. K. MAINI, On the foundation of cancer modeling - selected topics, speculations, and perspectives, Math. Mod. Meth. Appl. Sci., 18 (2008), 593-646. | fulltext (doi) | MR 2402885 | Zbl 1151.92014
[3] A. BELLOUQUID - M. DELITALA, Kinetic (cellular) models of cell progression and competition with the immune system, Z. angew. Math. Phys., 55 (2004), 95-317. | fulltext (doi) | MR 2047290 | Zbl 1047.92022
[4] A. BELLOUQUID - M. DELITALA, Modelling complex biological systems - A kinetic theory approach, Birkhäuser, Boston, (2006). | MR 2248839 | Zbl 1178.92002
[5] E. DE ANGELIS - P.E. JABIN, Qualitative Analysis of a mean field model of tumor-immune system competition, Math. Mod. Meth. Appl. Sci., 13 (2003), 187-206. | fulltext (doi) | MR 1961000 | Zbl 1043.92012
[6] M. DELITALA - G. FORNI, From the mathematical kinetic theory of active particles to modelling genetic mutations and immune competition, Internal Report, Dept. Mathematics, Politecnico, Torino (2008).
[7] L. DERBEL, Analysis of a new model for tumor-immune system competition including long time scale effects, Math. Mod. Meth. Appl. Sci., 14 (2004), 1657-1681. | fulltext (doi) | MR 2103095 | Zbl 1057.92036
[8] A. D'ONOFRIO, Tumor-immune system interaction: modeling the tumor-stimulated proliferation of effectors and immunotherapy, Math. Mod. Meth. Appl. Sci., 16 (2006), 1375-1401. | fulltext (doi) | MR 2251457 | Zbl 1094.92040
[9] R. A. GATENBY - T. L. VINCENT - R. J. GILLIES, Evolutionary dynamics in carcinogenesis, Math. Mod. Meth. Appl. Sci., 15 (2005), 1619-1638. | fulltext (doi) | MR 2180711 | Zbl 1077.92031
[10] N. KOMAROVA, Stochastic modeling of loss- and gain-of-function mutation in cancer, Math. Mod. Meth. Appl. Sci., 17 (2007), 1647-1673. | fulltext (doi) | MR 2362759 | Zbl 1135.92017
[11] D. HANAHAN - R. A. WEINBERG, The Hallmarks of cancer, Cell, 100, 57-70, (2000).
[12] H. L. HARTWELL - J. J. HOPFIELD - S. LEIBNER - A. W. MURRAY, From molecular to modular cell biology, Nature, 402 (1999), c47-c52.
[13] M. KOLEV - E. KOZLOWSKA - M. LACHOWICZ, Mathematical model of tumor invasion along linear or tubular structures, Math. Comp. Mod., 41 (2005), 1083-1096. | fulltext (doi) | MR 2148091 | Zbl 1085.92019
[14] L. M. F. MERLO - J. W. PEPPER - B. J. REID - C. C. MALEY, Cancer as an evolutionary and ecological process, Nature Reviews Cancer, 6 (2006), 924-935.
[15] B. PERTHAME - L. RYZHIK, Esponential decay for the fragmentation or cell division equation, J. Diff. Equations, 12, (2005), 155-177. | fulltext (doi) | MR 2114128 | Zbl 1072.35195

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali