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Squarefree Lexsegment Ideals with Linear Resolution

VITTORIA BONANZINGA - LOREDANA SORRENTI

Sunto. - In questo articolo determiniamo tutti gli ideali completamente lexsegmento
squarefree con risoluzione lineare. Sia My linsieme di tutti 1 monomsi squarefree di grado
d i un anello di polinomi kl[xy, . . . ,x,] tn n variabili su un campo k. Ordiniamo i mo-
nomi lessicograficamente inmodo chex; > x2 > ... > &y, costunlexsegmento (digrado
d) e un sottoinsieme di My del tipo L(u,v) = {w € My : u >w > v} perqualcheu, v € My
con u >v. Un ideale generato da un lexsegmento e chiamato ideale lexsegmento.
Descriviamo la procedura per determinare quando un tale ideale ha risoluzione lineare.

Abstract. — I'n this paper we determine all squarefree completely lexsegment ideals which
have a linear resolution. Let My denote the set of all squarefree monomaials of degree d
m a polynomial ring klxy, . ..,x,] i n variables over a field k. We order the mono-
mials lexicographically such that x1 > xo > ... > xp, thus a lexsegment (of degree d)
1s a subset of My of the form L(u,v) = {w € My : u > w > v} for some u, v € My with
u > v. An ideal generated by a lexsegment is called a lexsegment ideal. We describe
the procedure to determine when such an ideal has a linear resolution.

Introduction.

Let M, denote the set of all squarefree monomials of degree d in a poly-
nomial ring R = k[xy,...,x,] in n variables over a field k. We order the
monomial lexicographically such that x; >axs>...>x,. A squarefree
lexsegment of degree d is a subset of My of the form L = L(u,v)=
={weM;:u>w>v}for some u, v € My with > v. An ideal generated by
a lexsegment is called lexsegment ideal. Lexsegment ideals in this generality
were first introduced by Hulett and Martin [7]. In extremal combinatorics one
usually considers initial lexsegment ideals. These are ideals which are
spanned by an initial lexsegment L‘(v) = {w € My : w > v}. A final lexseg-
ment is a set of the form L (u) = {w € Mg : w < u}. The squarefree shadow of
a set S of squarefree monomials in My is the set of monomials Shad(S) =
{swx; : Vs € S,Vi¢ supp(s)}, where supp(s) = {?: x; divides s}. We define the
1—th shadow recursively by Shadi(S) = Shad(Shadi_l(S)). A squarefree lex-
segment ideal is called completely lexsegment if all the iterated shadows of L
are again squarefree lexsegments.
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Lexsegment ideals have been considered in the non-squarefree case in [5] and
in [2]. In [2], Aramova, De Negri and Herzog determined all lexsegment ideals
which have a linear resolution. In [3], Aramova, Herzog and Hibi introduced the
concept of squarefree initial lexsegment ideal and showed that squarefree initial
lexsegment ideals are stable. In addition they computed the explicit minimal free
resolution of squarefree stable ideals, and showed that these resolutions are
linear. In the present paper we want to give a description for arbitrary
squarefree lexsegment ideals with a linear resolution. In order to do this, we will
often use the fact that initial squarefree lexsegment ideals are stable and have
linear resolutions [3], and that final lexsegment ideals are stable with respect to
the lexicographic order with x, > x,_1 > ... > @1, and thus by [3], they have a
linear resolution.

In the first section we translate some results for completely lexsegment
ideals in the exterior algebra to the corresponding statements in the polynomial
ring. In Section 2 we give a full characterization of squarefree completely
lexsegment ideals with a linear resolution. Qur approach is similar to that used
in [2]. Here the following isomorphism Torf(R/I, k) = Hi(x1, ..., 20 R/1),
where H;(xy,...,x,; R/I) is the Koszul homology, plays a crucial role. As an
application we consider some special classes of completely lexsegment ideals
with linear resolution. Finally, in Section 3 we consider arbitrary lexsegment
ideals and we describe the procedure to determine when such an ideal has a
linear resolution.

This paper may be considered as a contribution to the more general problem
of describing all monomial ideals with linear resolution.

1. — Completely squarefree lexsegment ideals.

In [4], the first author characterized completely lexsegment ideals in the
exterior algebra and gave some sufficient conditions for lexsegment ideals to
have a linear resolution. The following theorem shows that the problem of
studying minimal resolutions of lexsegment ideals in the exterior algebra can be
reduced to studying minimal resolutions of squarefree lexsegment ideals.

REMARK 1.1. — Let V be a vector space with basis ey, ...,e, over a field k
and let £ be the exterior algebra over V. Let J C E be an ideal in the exterior
algebra and let I be the corresponding squarefree monomial ideal in the
polynomial ring. Then:

1) I is completely lexsegment in R if, and only if, J is completely lexseg-
ment in K.

2) I has a linear free resolution over R if, and only if, the corresponding
ideal J has a linear free resolution over £ .
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PrOOF. — The assertion (1) follows from the definition of completely lexseg-
ment ideals in the exterior algebra [4]. The assertion (2) is taken from Aramova,
Avramov, Herzog (see Corollary 2.2 in [1]). |

Now we introduce some notation which we will use throughout this paper. For
w € My we set,

m(w) = min{i : ¢ € suppw}, M(w)= max{t:1? € suppw}
w' = ?A)/ﬂ(fm(w), w = W/-%'M(w).

Using 1.1 one can easily translate the results of Bonanzinga (Theorem 2.7,
Theorem 3.10 in [4]), on squarefree lexsegment ideals in the exterior algebra, to
the corresponding statements in the polynomial ring.

THEOREM 1.1. — Let u = a;, - - - x;, > v =&, - - a;, be two monomials in My
and I = (L(u,v)). Let k be the smallest integer such that (i, ji) # (k, k). Then I is
completely lexsegment if and only if one of the following conditions holds:

(@) w=w1@2 - 1%, -+ iy W &j, - XTiy > Bpy2py3 -+ - Lagz and
V=X102 " Xp—1Cn—d+k * " Lns
(b) 1, = k and for every w < v there exists © > k such that x; divides w and
LW
X

<.

THEOREM 1.2. — Let u, v € My be squarefree monomials with w > v and
I = (L(u,v)) be a squarefree completely lexsegment ideal. Let k be the smallest
wnteger such that (ig,ji) # (k, k). Then I has a linear resolution in the following
cases:
(@) w=2u1 - 2p_12;, -5, With ;- T;, > Tpyo - Tas2 and
V=21"" " Cp-1Cn—d+kTn—d+k+1 """ Ln,
(b) 1 =1 #7;1 and x1w’ < u for every w < v.

2. — A characterization of squarefree completely lexsegment ideals with a
linear resolution.

In this section we give a full description of squarefree completely lexsegment
ideals with a linear resolution. In order to prove the main theorem we need the
following Proposition which generalizes 1.2(b).

ProrosITION 2.1.— Let w=ux; ---x;, > v=uxj -z, be two monomials in
My and I = (I(u,v)). Let k be the smallest integer such that (iy,ji) # (k, k).
Suppose that k = iy, # ji and xw' < u forthe largest w < v. Then I has a linear
resolution.
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ProOF. — We can suppose k = 1. Since I is completely lexsegment with
k#1 it follows that w and v are of the form w=oa; - @12 - i,
V= -1, - -, In this case I is isomorphic to the ideal I generated by
L(xik—(kfl) w Lig—(e—1) Ljp—(—1) * 'xjd—(k—I)) in k[%ih,(k,l), ce ,xn,,(k,l)]. ObViOUSIy
I has a linear resolution if, and only if, I has a linear resolution. Moreover [ is
completely lexsegment if, and only if, I is completely lexsegment. Then the
assertion follows from Theorem 1.2. O

THEOREM 2.1. — Let u, v € My be squarefree monomials with w > v, and
I = (L(u,v)) be a squarefree completely lexsegment ideal. Let k be the smallest
integer such that (iy,j;) # (k,k)and B = {w € My : w < v, 2w’ > u}. Then I has
a linear resolution if, and only if, one of the following conditions holds:

@) u=ax1 - Tp_1, -, Wth 25, - 25, > L2 - - - Lay2 aNd
V=1"1"" " Ck-1Cn—d+kln—d+k+1 " Ln,

(b) i = k and the following condition holds: for every (wy, ws) € B x Bwith
X W2

<u

wy # wy there exists an index [, m(wy) < I < M(wp) such that xw] < u,

W2
and w] #—.
£

In order to prove Theorem 2.1 we need some preliminary results. We set:
J = {L'Ww),K = LF(w),L =J + K. Then one has I ¢ J N K but in general this
is a proper inclusion.

EXAMPLE 2.1. — Let u = 112316, v = Tow3xy 0 klx1, ..., x6] and I = (L(u,v)).
Then L(u,v) consists of the monomials L(u,v)={u; =u = z12326,u2 =
T1T4TH, Uz = T1T4T6, Uy = T1T5T6, Us = Tox3x4 = v}. The inclusion I C JN K s
proper, because x1xax3x5 ¢ I, but z1x27305 € J N K. Indeed, I is not completely
lexsegment, since for w = xox3w5 < v = Towswy condition (b) of Theorem 1.1 does
not hold.

Since L is the ideal spanned by all squarefree monomials of degree d, it is
stable. We note that K is stable in the sense of Eliahou and Kervaire with respect
to the lexicographic order with x, > x, ;1 > ... > x;. Since initial squarefree
lexsegment ideals are stable, it follows that J is stable, too. In particular, it
follows from the Aramova-Herzog-Hibi resolution [3] that the ideals J, K and L
have linear resolutions. In other words, we have

Torf(k,R/J); =0, fori >0and j#i+d—1

and similarly for K and L. We note that for an arbitrary graded ideal D the group
Torf;Et (k, R/D) is isomorphic to the Koszul homology group H;(x, R/D) where «x is
the sequence x3, ..., x,. We denote this homology group simply by 7;(D). In [3],
Aramova, Herzog and Hibi determined cycles whose homology classes form a
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basis of T;(D) where D is a squarefree stable ideal. We consider the Koszul al-
gebra as the exterior algebra over the k—vector space with basis ey, . . ., ;. Then,
the i—th component of the Koszul complex has a basis e; = ¢;, Aej, A... Ag;
where o = {j1,...,ji} C {1,...,n}, with j; < ... <j;. Now for J = (Li(v)) the
cycles whose homology classes form a basis of T;(J) are

we, Aeyuwy, we LW, |o|=1i—1, max(s) < Mw), o()suppw) = 0.

The homology classes of the same cycles, but with w € M, arbitrary, form a basis
of T;(L). We call this kind of cycles classical cycles.

Analogously, the cycles whose homology classes form a basis of T;(K) are the
following:

Wemuy N es, W E L (w), |o|=1-1, mw) < min(s), N supp(w) =10
which we call non-classical cycles. The exact sequence of R—modules
0—R/JNK—R/JOR/K— R/L—0

yields the long exact sequence

(1) oo =T — Ty NK)—T(J) @ Ty(K) 2T — ...

Provided I = J N K, this sequence implies (since J, K and L have linear re-
solutions) that I has a linear resolution if and only if the maps ¢ are surjective for
all 7 > 1.

Note that ¢ maps [we, A eyl onto itself in T;(L). Therefore we have to
describe the induced map

o' Ti(K) — Ty(L)/Ti(J])

where Fker(p) = ker(¢’), and where a basis of T;(L)/T;(J) is given by
W = {[we, A epunl, w € Mg, w < v}. On the other hand a basis of 7;(K) consists
of the homology classes of the non-classical cycles. Therefore to understand the
image of T;(K) in T;(L) we write a non-classical cycle as a linear combination of
classical cycles in 7%(L).The next result can be easily proved by following the
arguments of [2, Lemma 1.2].

LEMMA 2.1. — Let [2"e,,(2) A e.] be a basis element of T;(K). If max(t) > M(z)
one has

(0([2//37n(z) Ne.) = [(xmax(r)z//),em(z) A €7\max(r) A eM(wmax(,)z”)]

and if max(t) < M(z), then

(0([z”em(z) Ned) =(— 1)i_1[zler A eM(z)] + Z + [(xtz/l)/em(z) A €\t A eM(xtz”)]-
tet

After these preparations we can prove Theorem 2.1.
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Proor. — [Proof of 2.2] In case (a) it follows from Theorem 1.2 that I has a
linear resolution. In case (b)) we may assume k = 1. If |B| = 0 it follows from
Proposition 2.1 that I has alinear resolution. If | B| = 1, in order to prove that  has
a linear resolution, we show that the maps

9 :Ti()) & Ti(K) — Ti(L)

are surjective for every ¢ > 3. We have already noted that the homology classes of
the cycles w'e, A eprqy With w > v are in the image of ¢. One can easily show that
the homology classes of the cycles w'e, A eyrqy), With w < v and m(o) = 1 are in
Img, arguing as in the proof of Theorem 1.3 in [2]. Let U be the k— subvector
space of T;(L) generated by the homology classes of the following classical cycles:
w'es A ey for every w € M, where min(o) > 2, and w'e; A e, A ey Where
w >v. Then U C Im ¢, and ¢ is surjective if, and only if, the induced map

?:Ti(K) — T:(L)/U

is surjective. Moreover, the homology classes of w'e; A e, A ey, w < v form a
basis of T;(L)/U. For every w < v with ;%' < u we have that w'e; A e, A ey =
2"en N e is anon-classical cycle, with m(z) = 1, max(r) = max(w) and z = x;w'.
So it remains to show that for the only w < v with x;w' > u the cycles
w'er A e, A eyay are in I'mg. Since I is completely lexsegment then, from Theorem

1.1, there exists anindex ! € supp(«’) such that 90910_141 <u.Letz = 9091c_w In this case

1 1
M(z) = M(w). We can consider the cycle [2"e; A e.] with T = p U [, max(z) < M(z).
For a non-classical cycle [2" ey, ) A e.]set T = {t € v: 212" < v}. From Lemma 2.1
we obtain

P(2"er Ne) = @iz er Aeay A eyn]

teT
since Z'e: Aeyy € U. If T = {t1,...,t,} we can write:
”
2) 9(2"er Necl) = Elwier Aeny, A eaan)
i=1
with x:,2”" =w; <v,7=1,...,7. Since |B| =1 there exists an index ¢ such that

w; =w, t; =land for allw; <vj #1, xlw} < u. Since z; = xle’- < u then
(3) wier A eng Aeyay = 2je1 Aeg, Vj#1.

So Yw; < v, and j # 1, the cycles [we; Ae, A eM(wj)] are in Imp. It remains to
prove that the cycles [wie1 A e, A ey ] are in Imgp. From (2) and (3) we obtain

[wer A eay, Aeyan] = p(2"er Aec) = > +[2fer Aeyl.
j

So the cycles [w)e1 A e, A epa;)] can be expressed as a linear combination of non-
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classical cycles, thus they are in Im p. Now we prove that in case |B| > 11 has a
linear resolution by induction on |B].

If |B] =2 then there exist w; <v,w2 <v and an index [ such that

LW i)

L 2§uandw/1’7éf,
i

.. W

and for all the remaining w; < v, xlw; < u. Assume z; = 0,0, 22 = 21 =z Then,

M(zy) = M(w;) and M(z2) = M(wz). We can consider the cycles o

m(wr) <1< M(ws), with i) > u, xywh > u, xw] < u,

[2]e1 Ae ], with 7; = p; Um(wy), max(ty) < M(z1)
[25e1 Aeg,], with 1o = py Ul, max(ts) < M(22).

Set T), = {t € 7, : a2, < v}, with k = 1,2. As in case |B| < 1 we have

o(ze1 Ney)) = Z + [w]’el A et A emaep] With w; = w2y, <v,tp € Ty
J

We distinguish four cases.

Case a) xi2] # 125 = we, Vt € T'1. In this case we have:
(4) Plzier Neg D) = E[wer Aeqy A el £ [wher Aeqmun) A eyon]-
jA2
Therefore, [w)e1 A €\, A emwyl i a linear combination of non-classical

cycles.

Case b) x;2] = xj2) = ws, for some t € Ty. In this case M(z1) = M(wy) =
M(ws) and we have:

(5) @([z,{el A 611]) = Z £ [w;el A €\t A 6M(wj)] + [wllel A €1 \m(w,) A eM(wl)]
J#12
+ [w’Zel A €r\t N eM(wl)l

Case a') x3zy # Xpwy)?] = w1, Vs € Ts. In this case we have:

(6)  w(zye1 Aeg,l) = Z T [wer A g, A ey £ [Wher A ey A ey
A2

Therefore, [wher A e\ A epauy] is a linear combination of non-classical cycles.

Case b') x2) = Xp)?| = wi, for some se€ To. In this case M(zp) =
M(z1) = M(w;) and we have:

(1) 9(zher Neg]) = Z £ [wier A eq,\s; A eman] £ [wher A eqi A ey
oy
+ [w’lel Aer\s N eM(wz)]‘
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Note that conditions b) and b’) are not compatible. In fact suppose that
(8) LsZly = Loy, Ct2] = X174,

then, by substitution we obtain % = . Tt follows that ¢ = m(w;) and s = I

ort=1and s =m(w). If t = m(w;) and s = [, it follows from (8) that w; = ws,.
But this is a contradiction. If ¢ = [ and s = m(w;) it follows from (8) that 2] = 2.
But by hypothesis we have z{ #z;. We want to show that the cycles
[wier A ey, A eyl [Wher Ae,, A eM(WZ)] are in Imp. We have already noted that
in case (a) the cycles [wie; A e, A eyuy] are in Im . If condition b) is satisfied
then also condition o) is satisfied, because b) and b’) are not compatible. So, from
equation (6) we obtain

(9) + [14/261 A\ e\l A eM(wZ)] = @([2’2’61 A\ 612]) — Z + [w}el A\ efz\sj A eM(wj)]'
J#12

By substituting (9) in (5) we obtain that [w}e; A e, A epq] is a linear combi-
nation of non-classical cycles; thus it is in Imp. With similar arguments we
obtain that the cycles [whe; A e, A eyquy)] are in Imp. Then @ is surjective.
X1W;
Now,let B = {w,...,w,}, and for allw;,w; € B, w; # w;, ;0w < u,% <,
w; . . . U
A x—’ . From induction hypothesis, the cycles [wie; A e,, A eyy] arein Im o, for
every i= 1,...,mn — 1. Then, [wie; Ae,, Aeyas] =lzier Negli=1,...,n—1.
We want to prove that the cycles [w)e1 Ae, Aemuw,] are in Imp. Let
L1Wn

zn -

[2)e1 A ef,,] with max(z,) < M(z,). Set T, = {t € 7, : 242, < v}. Then

< u.Fromhypothesis z,, # z; = xlw Vj # n. Let us consider the cycle

—r AV
olz,e1 Neg,] = Z £ (iz,) e1 A eg\e A ey
teT,

= Z + @([z%’@l A efi])] + [’M);l@l Aegni, N EM(w”)].

Then [w)e1 A e\, A em,)] is a linear combination of non-classical cycles. Then
itisin Ima.

To conclude it remains to prove that if neither of conditions (a) and () holds,
then 7 does not have a linear resolution. Let i; = 1 and assume that there exists
(w1, ws) € Bx B, w; #wy such that for all index [ e supp(w}), m(w;) <

I < M(ws) with apw] < u, % < u the condition w’l’ = % holds. Then [ # m(wy).
1 1

In fact if l=m(w;) then w; =ws. Set p; ={t€clw):1<t< M)},
pp={s€clws): 1 <s<Mmws)}. So l€p;, and m(w;) € py,. The -cycles
[wie1 Aep Aenuyl and [wher Ae,, A eyl are two distinet basis elements in
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Ti(L)/U for some ¢ > 3. For a non-classical cycle [2”e ) A e-], set

{max(r), if max(r) > M(z) ;
Bz, 1) =
{tet:xr" <v}, if max(r) < M(z).

Then from 2.1

@([zl/em(z) A e‘[]) - Z + [(xtz/,)/em(z) A er\t A eM(z)]
teB(z,7)

because [2'e; A eyn] € U. So, if 9([2"e,,(2) Ae:]) # 0 then m(z) = 1. Since ¢ is
surjective then [wie1 A e, A epaey]l and [whe A ey, A epy] are in Img. Then
there exists a non-classical cycle [2]e; A e;,] such that z; = x;w] and

(10) (@) er A ey A M) = wher A e A eyan)s

for some t € 7;. Moreover, there exists a non-classical cycle [z5e; A e, ] such that
L1z
29 = —— and
Y]

(11) (acsz’z’)/el A €r\s A eM(xszg) = w’261 A €, A eM@uy)>

for some ¢ € 72. From (10) we obtain ¢t = m(wy), p; = 71 \ m(w1), M(@a)2]) =
M(w;). From (11) we obtain s=1{, p, =1\, M(xz}) = M(ws). Since
p1\l=ps \m(w;) then 7; =15. So, [2]e1 Ae,]=1[2he; Ne,] and the cycles
[wier Aep Aepul, [Wher A ey, A eprany] are the image of the same cycle, but this
is a contradiction. O

In what follows we consider some special classes of completely lexsegment
ideals with linear resolution.

COROLLARY 2.1. — Let w = ---x;, > v =2, ---xj, be monomials in Mg,
I =(L(u,v)). Let k be the smallest integer such that (i, i) # (k, k). If
U1 =k + 1 then I has a linear resolution.

PRrROOF. — According to the previous considerations we may assume iz = 2.
Then we prove that if u = xyxe;, . .. 5, v = @, ... ¥, With j; > 1, I has a linear
resolution. Let B be the set defined in Theorem 2.1. Let w <w, then
m(w) > m(v) > 2. If m(w) > 2 then x1w’ < w and this implies m ¢ B. Take two
monomials wy,we € B, wy # we, then m(w;) = m(wz) = 2. Since w; < v,we < v
and [ is completely lexsegment, it follows from 1.1 that there exists anindex /; > 1

and an index o > 2 such that i divides w; and Iy divides ws, and 910 1 <u,
Iy
LW LW X1W W
172 < 4. We have: x| < 171« U, 1wy < 172 < wand wy # 2 In fact,

X, A X, m(ws)
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sinee m(wy) = mws), if wi = % then w; = ws, which is a contradiction. Then
2
the assertion follows from Theorem 2.1. O

We also can give a direct proof of Corollary 2.1 not using Theorem 2.1. In
order to do this we need the following technical lemmas. Note that I is not ne-
cessarily completely lexsegment.

LEMMA 2.2. — Let u = @y - - - Xp_18030;,,, - - iy, V = L1 - L1, - j, U >V
be monomaials in My. Let f = a1 a1, w=u/f, 2 = v/f, with w,z € Mg
and J = ack(Lf(w”)),f{ = (L(py1 - - - Xg41,2))- Then, the ideal I = (L(u,v)) has a
linear resolution if, and only if, the ideal generated by Shad(L/(w")) N Li(z) in
klxk,1, ..., 2,] has a linear resolution and JNK is generated in degree
d—k+2.

ProoOF. — The lemma follows by arguments similar to those of Lemma 2.2
in [2]. O

LEMMA 2.3. — Let u = &1 - - - 1%k %;,,, - - X3, ANA V=21 -+ Lpm101%n—d-+h+1
sy With g >land k+1 <l <n—d+k Then I has a linear resolution.

PrOOF. — The lemma follows by arguments similar to those of Lemma 2.3
in [2].

PROOF. — [Proof of 2.1] Let us consider the ideals J and K as in Lemma 2.2.
We prove that if 7o = 2 then

(12) JNK = (L (xv)).

Take a monomial w € J N K. From w € J = x1(Lf (") it follows that w = x1pq
with p monomial, ¢ < «”. From w € K= L(xg - - - 4.1, v)) it follows that w = rs,
with &g - - - 4,1 > s > v, » monomial. Since 1¢ supp(s) then 1 € supp(r). It follows
that » = x;m, with e monomial. So w = xyms with &35 > x1v. Then w € (Li(x1v)).
So JNK C x1(L (v)). Take a monomial w € (Li(x;v)), then w = x1pq, with p
monomial, ¢ >v. Since 1¢supp(q) then ¢ < us---as:1, then w € K. Since
X2 ...%441 > ¢ > v, then min(q) > 2. Then ¢” < u". It follows that ¢” € L' (u")
and w = 1Py qq" € t1(L/ W) = J. Sowe obtain J N K O (Li(x1v)). The ideal I
has a linear resolution if and only if JNK has a linear resolution and
& ﬁf{)dﬂ #£0. From equality (12) we obtain that (J ﬂf{)dﬂ # 0. Moreover
J N K has a linear resolution because the initial lexsegment ideal (Li(x,v)) has a
linear resolution. Hence we obtain the assertion. O

As another special case of Theorem 2.1 we get
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COROLLARY 2.2. — Let w=wx; ---x;, > v =2, ---xj, be monomials in My,
I = (L(u,v)) a completely lexsegment ideal. Let k be the smallest integer such
that (i, ji) # (k. k). If iy > k+1andu = &1 - - 1050542 - - - ©qr1 then I has a
linear resolution.

ProOF. - We may assume k=1 and 4 =1. We prove that if
U = X1%3%4 . . . Xq11 and v = ¥, ... ¥, j1 > 1 then I has a linear resolution. Let
w < v, then m(w) > m(v) > 1. Let B be the set defined in 2.1. If m(w) > 3 then
21w’ < u and this implies that w¢ B. So, if w < v and w € B then m(w) = 2. Let
wi,we € B, then from Theorem 1.1 xywy < u and x;w) < u. Since w; # we and
m(w;) = we then w) # w)). Then the assertion follows from 2.1. O

We also can give a direct proof of Corollary 2.2 not using Theorem 2.1.

PRrOOF. — We may assume k = 1. Let us consider the ideals J and K as in
Lemma 2.2. We prove that if u = xy23 - - - €41 then

JNK = (Li(xqv)).

Let p € J N K a monomial. Since p € J, then p = gr, with ¢ monomial, r = s,
s <u" squarefree monomial, 1¢supp(s), then p =x;gs. Since p € K, then
p = mt with m monomial, ¢ squarefree monomial, a3 - - -x4,1 >t > v. So we ob-
tain p = x1qs = mt. Since 1¢ supp(?), then 1 € supp(m). Therefore, p = 2wt
with a1t > xyv. It follows that p € (L'(x1v)). SoJ N K C (L'(x1v)). Conversely, let
p € (Li(x1v)), then p = ¢ with ¢ monomial,  squarefree monomial such that
r>xv. It follows that 1 € supp(r) and xg---2q1 > xi > . Then, p € K.
Moreover, since 1 € supp(r) it follows that » = x1t with ¢ sbuarefree monomial,
t > v. Therefore, p = g1t with 1¢ supp(t). Since 1¢ supp(?) then m(t) > 2 and
m(t") > 3. Moreover, u” = x5 24,1 and p = x1qxypt”, t” < u”. It follows that
p € J. So we obtain (Li(x,v)) C J N K. The equality J N K = (Li(x;v)) shows that
JNKis generated in degree d + 1 and has a linear resolution and the assertion
follows. O

In the following we consider another special class of completely lexsegment
ideals with linear resolution for which we give a direct, simple proof.

PROPOSITION 2.2.— Let u=x;, ---x;, > v =xj, - x;, be monomials in My,
I = (IL(u,v)) a completely lexsegment. Let k be the smallest integer such that
(rs gr) # (kyB). If 1 > k+1 and v=a1  Tp1BTp_gips1 - Tn  With
k+1<l<n-—d+kthen I has a linear resolution.

PrOOF. — We can suppose k = 1. We prove that if u = ;g 1 - - -, then 7
has a linear resolution. We distinguish two cases:



286 VITTORIA BONANZINGA - LOREDANA SORRENTI

Case 1. For every w < v &1’ < u. In this case, it follows from Proposition 2.1
that I has a linear resolution.

Case 2. There exists w < v such that x;w’ > u. It follows from w < v that
m(w) = m > [. Since x;w" > u then m < 4;,1. So we obtain [ < m < ;7 and the
assertion follows from Lemma 2.3. O

3. — Squarefree lexsegment ideals with linear resolution.

In the following we describe the procedure to determine whether or not a
squarefree lexsegment ideal has a linear resolution. Let I = (L(u,v)) be a lex-
segment ideal with u = w;, ... x;,, v =@, ... %;,.

e If u = v then I has a linear resolution. In the next steps we may therefore
assume that u > v.

e If I is completely lexsegment, see Theorem 2.1.

e If I is not completely lexsegment, we let f = x| - - -_1, and let I be the
ideal generated by L(u/f,v/f) in klx;,, ..., 2,]. Obviously I has a linear
resolution in kl[xy,...,x,] if, and only if, I has a linear resolution in
k[xik, . ,xn].

e If I is completely lexsegment, see Theorem 2.1, and if I is not completely
lexsegment, see Theorem 3.1 below.

It remains to prove 3.1; it characterizes all ideals with the property that
1, = k, which have a linear resolution and which are not completely lexsegment.

THEOREM 3.1. — Let w = x;, - - -, v = @}, . .. j, be squarefree monomials in
Mg with i, = k. Suppose that the ideal I generated by L(u,v) is not completely
lexsegment, then I has a linear resolution if, and only if, w and v are of the form

U =X1 " 10Xy~ Xig, V=T1 - X101 Xp—d+k+1 " Ln

forsomelLl k+1<l<n-—d+k
For the proof we need the following results:

LEMMA 3.1.-Let u,ve My, u>v with w=4k If i1 =k+1 then
I = (L(u,v)) is completely lexsegment.

Proor. — We prove that if I is not completely lexsegment then

ip1 > k+ 1. It follows from 1.1 that there exists a squarefree monomial
WXy,

o)

w<v such that, for all <>k, 1€ suppw), > u. Suppose that
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W=2ap %, With 1 <7 <13 < ... <73 <n. The inequality po > — implies

) Lk
Xy -y, > 1 Tp_1%,,, and we obtain 1 =1,72=2,...,7,_1 =k—1 and
e < ipy1. It follows from w < v that r, >k + 1. Then k+1 <, < i1 and
the assertion follows. O

LEMMA 3.2. — Let
U =01 W 1L - Wiy V= 1 D11~ D

be monomials tn Mg withk +1 <1 <n —d + k. Suppose that I = (L(u,v)) is not
completely lexsegment. Then i1 > L.

Proor. — It follows from 1.1 that there exists a squarefree monomial
W,

w<v such that, for all 7>k, 1< supp(w), b o Suppose that

. Lt . w u . .
W=10L, %, With 1 <7 <1 <...<7q <n. The inequality — > — implies
Xy Xk

Xpy -y, > X1 Xp_1%,,, and we obtain 1 =1,7%=2,..., 71 =k—1 and
1 < gy1. It follows from w < v that r, > 1. Then [ <#; <1, and the
assertion follows. O

ProOF. — [Proof of 3.1] Suppose that u, v are of the form
(13) U =21 T 1Tk Ty, Tigy ¥ = X1 T 10— d ket 1" " T

for some k +1 <1 < n — d + k. It follows from Lemma 3.2 that i, = m(w") > L.
Then from 2.3 it follows that I has a linear resolution. Conversely, we prove that
if 4, = k and I has a linear resolution (/ is not completely lexsegment) then « and
v are of the form (13). Since ¢, = k, we have u = @1 - - - ¥p_124%;,,, - - - X;,. Since [
is not completely lexsegment v is of the form v=w;---ap_12;,%;,, - -,
with jp =m@E)=1l<n—d+k. To conclude, it is enough to prove that
2= X%y gkl Cn. Obviously I =j; >k+1. We distinguish two cases
l=k+1andl>k+1.

Case 1. j, = k + 1. In this case we will prove that z = a, 1%, _gips1 - Cn-
We first show that in k[x;,1,...,2,] one has

(14) Shad(Z/ (")) N Li(z) = L(x 1w, 2).

If q e L(xpw",2) then g >z It follows that ¢ € Li(z). Moreover, since
2 < q < apw' then ¢ = 17, with » < w”. Then q € Shad(L/(w")). It follows
that ¢ € Shad(Z/(w")) N Li(z). Conversely, if ¢ € Shad(I/(w")) NLi(z), then
2 < q <X 1%.2- - %g,1 and there exists j € supp(q), j¢ suppw”’), k+1<j<n

such that ocg <w".Thenz < q < xjw” < xpw”. It follows that ¢ € Ly w”, 2).
J
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We proved in 2.2 that (J N K)q_j.o is spanned by a(Shad(L/ (w")) N Li(2)) =
2 L(xp 1w, 2). Then, since I has a linear resolution it follows that L(xy, w", 2) # 0,
that is z < apw”’. Now we will show that if z # ap, 1%, gige1 -2, then
Xka 10k 2%y _dak * - - L 1S a generator of degree d — k + 3 of J N K and from 2.2
this is a contradiction. Since z # X 1%, _qiks1 - - - Tn then 2 > Cp 1 Cy_digr1 - e
From @, g 1@, < 2" <w” it follows that @, g k41 -, € L/ "). Then,
T 18k 28— d k1 - T € (L (W) and we obtain @@y 18k 2%y —gikr1 -y €J =
(L' (w")). Since z < a1, ;w” one has m(z") > mw'") > k + 2 (Lemma 3.1). In or-
der to obtain w1 %k12Cy_diks1 * Xp € K we prove that from z < x;1w”, and 1
not completely lexsegment, it follows that mu(z”) > m(w”) >k + 2. Let us
suppose that m(z”) =k + 2, then m(w”) =k +2. But I not completely lex-

segment implies that there exists a monomial b < v such that o > xﬁ for
i Tk

all ¢+ >k Suppose b= - p_12, -2y, With 7, <741 < ... <7q. Then

b Xy -1y - . b
Z= k17 "> gy p_12peo - -, and we obtain m( — | <k +2.

T i b v Ldb v f
Moreover b < v implies - < f and then m<7) > m(?) =k +1. It follows
that k+1 gm(ﬁ) <k+2. Then m(—) =k +1. Since —~L§%~i,

” f f f ooy —f a
then — < —. So there exists an indexi=Fk +1 >k, ¢ € supp(b) such that
b Vi1 Dk

o < u. Then from condition (b) of 1.1 we obtain that I is completely lexsegment
(3

and this is a contradiction. Then m(z") > m@w"”) >k +2. It follows thgt
Lpei1 Tl > CpQp18h420n—dk1 - Ln > 2. Then el 10,120, d k1 -~ n € K.
So we obtain aper 12k 2%y gkl Cn € (J NK)g_ 3. Now we prove that
Xy 10k 2%y _daks1 - Ly 1S a generator of degree d —k + 3. Suppose that
Xt 10k42%n—dlet1 - - - X € Shad(L(ap 10", 2)), then T 1%k100y—diki1 - Ln = LY,
with y € L(xpqw",2), tésupp(y), k+2<t<n. If t=k+2 we obtain
Y = Cpp1%n—drks1 - - - Ln < 2 (because from hypothesis 2 # Xy 18y _gikr1 - - @n). If
L4 1%k4+28n—d+k+1 " "
Xt
m(w") >k + 2). So we obtain a contradiction. Hence ;101 2%, diki1 - %n
is a generator of J N K of degree d — k + 3.

t>k+2 then y = Tn o, xpw” @t follows from m(z") >

Case 2. | =j, =m(@) >k + 1, m = m@"). It follows from I not completely
lexsegment (Lemma 3.1) that m(w”) > m(z) > k+2. Thenm > 1>k + 2. Let Q
be the ideal generated by L(w,z) in kl[xy,a;, 241, .,%,]. Then, from I not
completely lexsegment it follows that @ is not completely lexsegment. In fact,
suppose that I is not completely lexsegment, then there exists a monomial b < v

such thatx— > xﬁ’ foralli > k. It follows that b = @y - - - ap_12), - - - 1. Take ¢ :]7,
i k

LS ﬂ, for all ¢ > k. Since supp(q) C {l,...,n}, then

we obtain ¢ <z and —
X L
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supp(@) C {l,...,n}, for all g<=z Hence there exists a monomial

q € klayg, %, ..., x,] such that xg> xﬂ’ for all ¢ > k. Then @ is not completely
i L
lexsegment. Now, arguing as in Case 1 we obtain that if @ has a linear re-

solution then % and v are of the form (13). We prove that z = x@,_g 541 - .
We first show that in k[x;, 2,1, ..., 2,] one has

(15) Shad(L/ (w")) N Li(z) = L(xyw, 2).

If qe L(xw’,z) then q>=z It follows that ¢ ¢ L};(z). Moreover, since
z < q<axw' then q = ayr, with r <w”, and ¢q € Shad(L./ (w")). It follows that
g € Shad(L/ (w")) N Li(z). Conversely, if ¢ € Shad(ZLf(w")) N Li(z), then z < ¢ <
XX %ge1 and there exists j € supp(q), j¢ supp(w”), I <j <mn such that
q
2.2 that (J NK)y_j 2 is spanned by x;(Shad(L/w")) N Li(z)) = x Lz, 2).
Then, since I has a linear resolution it follows that L(xw”,z) # 0, that
is z<aw’. Now we will show that if z#xx, gi5:1...%, then
LR 1%n—drkel - * - Ly 1S @ generator of degree d — k + 3 of J N K and from 2.2
this is a contradiction. Since z # xj@),_gipy1--- @, then 2 > @, _gipi1 - L.
From &, _gp41--- @, <2’ <w” it follows that @, g1 -4, € LY (w"). Then
B 1 Cp—datrt - -y € LT (W) and we obtain awX 1Ty _gapir Xy €J =
2p(LS (w"). Since z < xw” one has m(z") > m@'”) > 1+ 1 (Lemma 3.1).

In order to obtain apa;0, 10, _qips1 - %y € K we prove that from z < xu”
and I not completely lexsegment it follows that m(z") > mw”) >1+1. In
fact, suppose that m(z”) =1+ 1, then m(w’) =1+ 1. But I not completely

<w". Then z < g < xw” < ayw'”. It follows that q € L(x;w”, z). We proved in

L . . b u
lexsegment implies that there exists a monomial b < v such that o > - for
7
all i > k. Suppose b=y %p_1%, - %y, With 1, <71 < ... <7g. Then
o Lk 92 U >y dp_1@41%,,, %, and we obtain m(-) <
i i

{+ 1. Moreover, b <wv implies; <;—j and then mG) > mG) ={. It follows

thatlgm(?)<l+1.Thean>:l.Sinceglg%'l,thenégﬁ.So,
fa-f o X T X

. . . . . .b
we obtain that there exists an index ¢ =1 > k, ¢ € supp(b) such that xxL <u.

Then, from condition (b) of 1.1 we obtain that 7 is completely lexsegmeflt and
this is a contradiction. Therefore, m(z") > m(w’) > 1+ 1. It follows thgt
L1 " Bl d—te > Pplh 118k 28n—d+k+1 ** Ln > 2. Then &pa& 18y —gk1 - ¥n € K.
So we obtain apew 1%, gk 2w €  NK)g_ 3. Now we prove that
TpX Xy 1%n—drke1 - Xy 1S a generator of degree d —k -+ 3. Suppose that
L1100 —d ki1 - X € Shad(L(ww”,2)). Then xwy 12, g ki1 %n = €y, With
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y € Llxw",2), tésupply), (+1<t<mn. If t=1+1 we obtain y=
Xpy_dike1 - Xn < 2 (because, by hypothesis, z # ay,_gper - xn). ft>1+1
XL 1% —dh+1 " "
&Lt
So we obtain a contradiction. Hence wya;0;, 1%, _g k41 - - - €y iS a generator of
JNK of degree d—k+3. Now we claim that if 7 has a linear resolution,
then @ has a linear resolution, and this concludes the proof. In order to
prove the claim we introduce the following lexsegments and ideals. We let Q
be the extension ideal of @ in klxy,...,x,], P be the ideal generated by
L(gi1 .. %41, 0180 _dake1 - - %) in k[xp,q,...,2,] and P the extension ideal
of P in klxy,...,x,). Obviously it suffices to show that if / has linear re-
solution, then @ has a linear resolution. We notice that I = P + Q. This yields
a long exact sequence of k—vector spaces, for all @ € Z"

then y = LN x” (it follows from mu(z") > mw'") > 1+ 1).

S TP N Q) — Ti(P)y ® Ti(Q)y — Ti(Dy — - --

where the lower index a denotes the a—th graded component of the corre-
sponding vector space. Suppose now that @ does not have a linear resolution.
Then there exists an integer ¢ and an element a € Z", a = (a4, . . ., ay), such that

~ n ~
Ti@,=0 and ) aj>d—k—1i+2. Since the generators of @ are in

Ko, 21, 2151, - -, ] one has that T5(Q), = 0if ¢; # 0 for somej, k+ 1 <j <1 1.
It follows that a; =0 for j=%k+1,...,1 — 1. In particular, the a—th graded
component of these T; vanishes. This implies that Ti(j = Ti(Q)a # 0, contra-
dicting the fact that I has a linear resolution. O

In the proof of the previous theorems the characteristic of the base field is
arbitrary. Thus we can give the following

COROLLARY 3.1. — The linearity of the resolution of a squarefree lexsegment
ideal does not depend on the characteristic of the base field, k.
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