Bollettino

Unione Matematica Italiana

Giovanni Fiorito

On a recursive formula for the sequence of primes and applications to the twin prime problem

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 9-B (2006), n.3, p. 667-680.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2006_8_9B_3_667_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2006.

On a Recursive Formula for the Sequence of Primes and Applications to the Twin Prime Problem (*).

Giovanni Fiorito

Abstract

Sunto. - In questo lavoro presentiamo una formula ricorrente per la successione dei numeri primi $\left\{p_{n}\right\}$, che utilizziamo per trovare una condizione necessaria e sufficiente affinché un numero primo p_{n+1} sia uguale a $p_{n}+2$. Il precedente risultato viene utilizzato per calcolare la probabilità che p_{n+1} sia uguale a $p_{n}+2$. Inoltre proviamo che il limite per n tendente all'infinito della suddetta probabilità è zero. Infine, per ogni numero primo p_{n} costruiamo una successione i cui termini che appartengono all'intervallo $\left[p_{n}^{2}-2, p_{n+1}^{2}-2[\right.$ sono i primi termini di due numeri primi gemelli. Questo risultato e alcune sue implicazioni rendono ulteriormente plausibile che l'insieme dei numeri primi gemelli sia infinito.

Summary. - In this paper we give a recursive formula for the sequence of primes $\left\{p_{n}\right\}$ and apply it to find a necessary and sufficient condition in order that a prime number p_{n+1} is equal to $p_{n}+2$. Applications of previous results are given to evaluate the probability that p_{n+1} is of the form $p_{n}+2$; moreover we prove that the limit of this probability is equal to zero as n goes to ∞. Finally, for every prime p_{n} we construct a sequence whose terms that are in the interval $\left[p_{n}^{2}-2, p_{n+1}^{2}-2[\right.$ are the first terms of two twin primes. This result and some of its implications make furthermore plausible that the set of twin primes is infinite.

Introduction.

It is well known there are many open problems about the sequence of primes (see [1], [3], [4], [5], [6], [7]); one of these is the twin prime problem, which consists in finding out if there exist infinitely many primes p such that $p+2$ is also prime (if the numbers p and $p+2$ are both primes, they are called twin primes). In the first part of this paper we give a recursive formula for the sequence of primes $\left\{p_{n}\right\}$, that we think be novel (for other recursive formulas see reference A 17 p. 37 of [3]). In the second part we apply it to find a necessary and sufficient condition in order that a prime number p_{n+1} is equal to
(*) Mathematics Subject Classification: 11A41, 11B25, 40A05, 40A20.
Key words and phrases: primes, recursive formula, twin primes, periodically monotone sequences.
$p_{n}+2$. Moreover applications of previous results are given to evaluate the probability that p_{n+1} is of the form $p_{n}+2$ and from this we deduce that the limit of this probability is equal to zero when n goes to ∞. Finally, in the third part, for every prime p_{n} we construct a sequence $\Sigma_{p_{n}}$ whose terms that are in the interval $\left[p_{n}^{2}-2, p_{n+1}^{2}-2[\right.$ are the first terms of two twin primes and moreover we prove a theorem on the mean number of the terms of the sequence $\Sigma_{p_{n}}$ that are in the interval $\left[p_{n}^{2}-2, p_{n+1}^{2}-2[\right.$, which makes furthermore plausible that the set of twin primes is infinite. In the sequel we put as usual

$$
\mathbb{N}=\{1,2,3, \ldots\} \quad \text { and } \quad \mathbb{N}_{0}=\{0,1,2,3, \ldots\}
$$

Moreover let us indicate by $\left\{T_{n}\right\}$ the sequence of the first terms of the twin primes, so we have for example

$$
T_{1}=3, \quad T_{2}=5, \quad T_{3}=11, \quad T_{4}=17, \quad T_{5}=29
$$

Finally let us denote by $R\left(\frac{p_{n}}{p_{r}}\right)$ the remainder of the integral division of p_{n} by p_{r} for $r=1,2,3, \ldots, n$.

1. - A recursive formula for the sequence of primes.

Theorem 1.1. - The sequence of primes $\left\{p_{n}\right\}$ is given by the following recursive formula:

$$
\left\{\begin{array}{l}
p_{1}=2 \tag{1.1}\\
p_{n+1}=p_{n}+\min \left\{\mathbb{N}-\bigcup_{r=1}^{n}\left\{p_{r}-R\left(\frac{p_{n}}{p_{r}}\right)+k p_{r}, \quad \forall k \in \mathbb{N}_{0}\right\}\right\} \forall n \geqslant 1
\end{array}\right.
$$

Proof. - The proof is elementary. Indeed, by observing that

$$
p_{n}+p_{r}-R\left(\frac{p_{n}}{p_{r}}\right)+k p_{r}, \quad \forall k \in \mathbb{N}_{0}(r=1,2, \ldots, n)
$$

represents all the multiple numbers of p_{r}, that are greater than p_{n}, it follows that the set

$$
\mathbb{N}-\bigcup_{r=1}^{n}\left\{p_{r}-R\left(\frac{p_{n}}{p_{r}}\right)+k p_{r}, \quad \forall k \in \mathbb{N}_{0}\right\}
$$

is not empty and the number

$$
p=p_{n}+\min \left\{\mathbb{N}-\bigcup_{r=1}^{n}\left\{p_{r}-R\left(\frac{p_{n}}{p_{r}}\right)+k p_{r}, \quad \forall k \in \mathbb{N}_{0}\right\}\right\}
$$

is not divisible for $p_{1}, p_{2}, \ldots, p_{n}$. Now, let us observe that a prime number q
such that

$$
p_{n}<q<p
$$

cannot be exists. Indeed, on the contrary, it should be

$$
q-p_{n} \in \mathbb{N}-\bigcup_{r=1}^{n}\left\{p_{r}-R\left(\frac{p_{n}}{p_{r}}\right)+k p_{r}, \quad \forall k \in \mathbb{N}_{0}\right\}
$$

and then

$$
q-p_{n} \geqslant \min \left\{\mathbb{N}-\bigcup_{r=1}^{n}\left\{p_{r}-R\left(\frac{p_{n}}{p_{r}}\right)+k p_{r}, \quad \forall k \in \mathbb{N}_{0}\right\}\right\}
$$

On the other hand we also have

$$
q-p_{n}<p-p_{n}=\min \left\{\mathbb{N}-\bigcup_{r=1}^{n}\left\{p_{r}-R\left(\frac{p_{n}}{p_{r}}\right)+k p_{r}, \quad \forall k \in \mathbb{N}_{0}\right\}\right\}
$$

and this is a contraddiction.
From the previous considerations it follows easily that p is the least prime greater than p_{n}, and so we have $p_{n+1}=p$.

Remark 1.1. - For the Bertrand's postulate (see [4], theorem 418 p. 343) we have for $n \geqslant 2$

$$
\min \left\{\mathbb{N}-\bigcup_{r=1}^{n}\left\{p_{r}-R\left(\frac{p_{n}}{p_{r}}\right)+k p_{r}, \quad \forall k \in \mathbb{N}_{0}\right\}\right\}<p_{n}
$$

and therefore we get

$$
\begin{aligned}
& \min \left\{\mathbb{N}-\bigcup_{r=1}^{n}\left\{p_{r}-R\left(\frac{p_{n}}{p_{r}}\right)+k p_{r}, \quad \forall k \in \mathbb{N}_{0}\right\}\right\}= \\
& \qquad \min \left\{\mathbb{N}-\bigcup_{r=1}^{n-1}\left\{p_{r}-R\left(\frac{p_{n}}{p_{r}}\right)+k p_{r}, \quad \forall k \in \mathbb{N}_{0}\right\}\right\} .
\end{aligned}
$$

Remark 1.2. - For computing the number

$$
d_{n}=\min \left\{\mathbb{N}-\bigcup_{r=1}^{n-1}\left\{p_{r}-R\left(\frac{p_{n}}{p_{r}}\right)+k p_{r}, \quad \forall k \in \mathbb{N}_{0}\right\}\right\}
$$

for $n \geqslant 2$, it is useful to observe that d_{n} is even and then to proceed as follows. If

$$
p_{r}-R\left(\frac{p_{n}}{p_{r}}\right) \neq 2 \quad \text { for } \quad r=1,2,3, \ldots, n-1
$$

then $d_{n}=2$, otherwise $d_{n} \geqslant 4$. If $d_{n} \geqslant 4$ and if the equations

$$
p_{r}-R\left(\frac{p_{n}}{p_{r}}\right)+k p_{r}=4 \quad(r=1,2,3, \ldots, n-1)
$$

have no integral solutions k then $d_{n}=4$, otherwise $d_{n} \geqslant 6$, and so on.
REmARK 1.3. - For computing the number $R\left(\frac{p_{n}}{p_{r}}\right)$ for $r=2,3, \ldots, n-1$ it is useful to observe that for $r=2,3, \ldots, n-2$ and $n \geqslant 4$ the following recursive formula holds

$$
\begin{equation*}
R\left(\frac{p_{n}}{p_{r}}\right)=R\left(\frac{R\left(\frac{p_{n-1}}{p_{r}}\right)+d_{n-1}}{p_{r}}\right) \tag{1.2}
\end{equation*}
$$

and for $r=n-1$ we have obviously $R\left(\frac{p_{n}}{p_{r}}\right)=d_{n-1}$.
Remark 1.4. - Taking into account the Remark 1.3, the formula 1.1 can be employed to construct easily tables of primes.

2. - Some consequences of recursive formula.

The following theorems follow from theorem 1.1 and Remark 1.2.
Theorem 2.1. - We have for $n \geqslant 3$

$$
p_{n+1}=p_{n}+2
$$

(and therefore p_{n} and p_{n+1} are twin primes) if and only if it results

$$
p_{r}-R\left(\frac{p_{n}}{p_{r}}\right) \neq 2
$$

for $r \geqslant 1$ and such that $p_{r} \leqslant \sqrt{p_{n}+2}$.
Proof. - From theorem 1.1 and Remark 1.2 it follows that

$$
p_{n+1}=p_{n}+2
$$

if and only if it results

$$
p_{r}-R\left(\frac{p_{n}}{p_{r}}\right) \neq 2
$$

for $r=1,2,3, \ldots, n-1$. Now let us observe that the condition

$$
p_{r}-R\left(\frac{p_{n}}{p_{r}}\right) \neq 2
$$

is equivalent to say that $p_{n}+2$ is not divisible by p_{r}. Indeed if

$$
p_{r}-R\left(\frac{p_{n}}{p_{r}}\right)=2
$$

we have

$$
p_{n}=q p_{r}+p_{r}-2,
$$

where q is the quotient of p_{n} by p_{r}. From the previous relation it follows

$$
p_{n}+2=(q+1) p_{r},
$$

and therefore $p_{n}+2$ is divisible by p_{r}. If

$$
R\left(\frac{p_{n}}{p_{r}}\right) \neq p_{r}-2
$$

let us distinguish two cases. If

$$
R\left(\frac{p_{n}}{p_{r}}\right)<p_{r}-2
$$

then it follows

$$
p_{n}=q p_{r}+R\left(\frac{p_{n}}{p_{r}}\right)
$$

and then

$$
p_{n}+2=q p_{r}+R\left(\frac{p_{n}}{p_{r}}\right)+2
$$

and this proves that $p_{n}+2$ is not divisible by p_{r}. If

$$
R\left(\frac{p_{n}}{p_{r}}\right)=p_{r}-1
$$

then it follows

$$
p_{n}=q p_{r}+p_{r}-1
$$

and then

$$
p_{n}+2=(q+1) p_{r}+1
$$

and this proves again that $p_{n}+2$ is not divisible by p_{r}. From the previous observation the thesis follows easily.

If we observe that

$$
R\left(\frac{p_{n}}{p_{r}}\right) \in\left\{1,2,3, \ldots, p_{r}-1\right\}
$$

we can evaluate easily the probability that

$$
p_{n+1}=p_{n}+2
$$

for large n. Indeed the following theorem holds.
Theorem 2.2. - The probability

$$
P\left(p_{n+1}=p_{n}+2\right)
$$

for large n is given by the formula

$$
P\left(p_{n+1}=p_{n}+2\right)=\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{9}{10} \ldots \frac{p_{r}-2}{p_{r}-1}
$$

where p_{r} is the greatest prime such that $p_{r} \leqslant \sqrt{p_{n}+2}$.
From previous theorem we get also the following result.
Theorem 2.3. - The formula

$$
\lim _{n \rightarrow \infty} P\left(p_{n+1}=p_{n}+2\right)=0
$$

holds.
Proof. - From the theorem 2.2 we get

$$
P\left(p_{n+1}=p_{n}+2\right)=\left(1-\frac{1}{2}\right) \cdot\left(1-\frac{1}{4}\right) \cdot\left(1-\frac{1}{6}\right) \ldots\left(1-\frac{1}{p_{r}-1}\right)
$$

where p_{r} is the greatest prime such that $p_{r} \leqslant \sqrt{p_{n}+2}$. Therefore

$$
\lim _{n \rightarrow \infty} P\left(p_{n+1}=p_{n}+2\right)=\prod_{n=2}^{\infty}\left(1-\frac{1}{p_{n}-1}\right)
$$

But the infinite product is divergent to zero because the series

$$
\sum_{n=1}^{\infty} \frac{1}{p_{n}}
$$

is divergent (to ∞) (see [4], p. 16 Th. 19), and the thesis follows.

Let us observe that the previous theorems are a theoretic explanation of the fact that twin primes become rarer and rarer as n becomes very large. Moreover these results match (but they are of different type) with other theoretic explanations (see for instance [4] p. 412 and [6] p. 133 ex. 9.1.15 and p. 143 ex. 9.3.12).

3. - The twin prime problem.

By using the theorem 2.1, for every prime $p_{n} \geqslant 3$ it is possible to construct a sequence $\Sigma_{p_{n}}$ of natural numbers that contains among its terms all terms of the sequence $\left\{T_{m}\right\}$ for $T_{m}>p_{n}$, moreover all the terms of the sequence $\Sigma_{p_{n}}$ that are in the interval $\left[p_{n}^{2}-2, p_{n+1}^{2}-2\left[\right.\right.$ are terms of the sequence $\left\{T_{n}\right\}$. Let us proceed to construct Σ_{3}.

If $p_{n}\left(p_{n} \geqslant 5\right)$ is such that $p_{n+1}=p_{n}+2$, then necessarely it is a term of the sequence

$$
\begin{equation*}
\{5+6 k\}_{k \in \mathbb{N}_{0}} . \tag{3.1}
\end{equation*}
$$

Indeed this is obvious for $p_{n}=5$; if $p_{n}>5$, for the theorem 2.1, we have

$$
R\left(\frac{p_{n}}{3}\right)=2
$$

and being also $R\left(\frac{5}{3}\right)=2$, it follows that $p_{n}-5$ is multiple of 3 ; but $p_{n}-5$ must be even and therefore we have

$$
p_{n}-5=6 k
$$

for some $k \in \mathbb{N}$. Therefore Σ_{3} is the sequence

$$
\{5+6 k\}_{k \in \mathbb{N}_{0}}
$$

which is an arithmetic progression with difference 6 . Let us observe that all the terms of Σ_{3} that are in the interval $\left[3^{2}-2,5^{2}-2\left[\right.\right.$ are terms of $\left\{T_{n}\right\}$, namely 11 and 17 .

Let us also observe that from 3.1 it follows that the difference

$$
T_{n}-T_{m} \quad \forall n, m \quad(n>m)
$$

is multiple of 6 .
Now, for finding Σ_{5}, let us consider the sequence $\{5+6 k\}_{k \in \mathbb{N}_{0}}$ and search k such that

$$
\begin{equation*}
R\left(\frac{5+6 k}{5}\right) \neq 0 \quad \text { and } \quad R\left(\frac{5+6 k}{5}\right) \neq 3 . \tag{3.2}
\end{equation*}
$$

Computing

$$
R\left(\frac{5+6 k}{5}\right)
$$

for $k=0,1,2,3,4$, we obtain respectively the numbers $0,1,2,3,4$; therefore, by observing that the sequence

$$
\left\{R\left(\frac{5+6 k}{5}\right)\right\}
$$

is periodic with period 5 , it follows that the condition 3.2 is verified if

$$
k=1+5 h \quad \text { or } \quad k=2+5 h \quad \text { or } \quad k=4+5 h \quad\left(h \in \mathbb{N}_{0}\right) .
$$

In this way we get the 3 sequences

$$
\begin{equation*}
\{11+30 k\}_{k \in \mathbb{N}_{0}}, \quad\{17+30 k\}_{k \in \mathbb{N}_{0}}, \quad\{29+30 k\}_{k \in \mathbb{N}_{0}} \tag{3.3}
\end{equation*}
$$

(which are arithmetic progressions with difference 30). So we obtain that Σ_{5} is the periodically monotone sequence $\left(^{1}\right.$) whose principal terms are

$$
11, \quad 17, \quad 29
$$

whose period is 3 and whose monotony constant is 30 . Let us observe that all the terms of Σ_{5} that are in the interval $\left[5^{2}-2,7^{2}-2\left[\right.\right.$ are terms of $\left\{T_{n}\right\}$, namely 29 and 41 .

Let us also observe that from 3.3 it follows that all terms of the sequence $\left\{T_{n}\right\}$ for $T_{n} \geqslant 11$ have as unity digit always one of the numbers $1,7,9$.

Now, for finding Σ_{7}, let us search k such that

$$
\begin{array}{ll}
R\left(\frac{11+30 k}{7}\right) \neq 0, & R\left(\frac{11+30 k}{7}\right) \neq 5 . \\
R\left(\frac{17+30 k}{7}\right) \neq 0, & R\left(\frac{17+30 k}{7}\right) \neq 5 \tag{3.4}\\
R\left(\frac{29+30 k}{7}\right) \neq 0, & R\left(\frac{29+30 k}{7}\right) \neq 5 .
\end{array}
$$

${ }^{(1)}$ A sequence $\left\{x_{n}\right\}$ in \mathbb{R} is called periodically monotone if there exist a natural number q and a real number k such that

$$
\begin{equation*}
x_{n+q}=x_{n}+k \quad \forall n \in \mathbb{N} \tag{*}
\end{equation*}
$$

The lowest natural number q for which $\left(^{*}\right.$) holds is called period. the constant k is called monotony constant. The terms $x_{1}, x_{2}, \ldots, x_{q}$ are called principal terms of $\left\{x_{n}\right\}$. The periodically monotone sequences generalize the periodic sequences and the arithmetic progressions (see [2]).

Computing all the remainders for $k=0,1,2,3,4,5,6$ and taking into account that the sequences

$$
\left\{R\left(\frac{11+30 k}{7}\right)\right\}, \quad\left\{R\left(\frac{17+30 k}{7}\right)\right\}, \quad\left\{R\left(\frac{29+30 k}{7}\right)\right\}
$$

are periodic with period 7 , we obtain the following 15 sequences (which are arithmetic progressions with difference $2 \cdot 3 \cdot 5 \cdot 7=210$ and $k \in \mathbb{N}_{0}$):

$$
\begin{array}{rll}
\{11+210 k\}, & \{17+210 k\}, & \{29+210 k\}, \\
\{41+210 k\}, & \{59+210 k\}, & \{71+210 k\}, \\
\{101+210 k\}, & \{107+210 k\}, & \{137+210 k\}, \\
\{149+210 k\}, & \{167+210 k\}, & \{179+210 k\}, \\
\{191+210 k\}, & \{197+210 k\}, & \{209+210 k\} .
\end{array}
$$

So we obtain that Σ_{7} is the periodically monotone sequence whose principal terms are

$$
11,17,29,41,59,71,101,107,137,149,167,179,191,197,209
$$

whose period is 15 and whose monotony constant is $210=2 \cdot 3 \cdot 5 \cdot 7$.
Let us observe that all the terms of Σ_{7} that are in the interval $\left[7^{2}-\right.$ $2,11^{2}-2$ [are terms of $\left\{T_{n}\right\}$, namely $59,71,101$ and 107 .

The reasoning can be iterated so that the following theorem holds.
Theorem 3.1. - For every prime number $p_{n}(n \geqslant 2)$ there exists a periodically monotone sequence $\Sigma_{p_{n}}$ with period

$$
1 \cdot 3 \cdot 5 \cdot 9 \cdot 11 \cdot 15 \cdot \ldots \cdot\left(p_{n}-2\right)
$$

whose monotony constant is

$$
2 \cdot 3 \cdot 5 \cdot 7 \cdot \ldots \cdot p_{n}
$$

and such that every term p of $\Sigma_{p_{n}}$ satisfies the conditions

$$
R\left(\frac{p}{p_{r}}\right) \neq 0 \quad \text { and } \quad R\left(\frac{p}{p_{r}}\right) \neq p_{r}-2
$$

$\forall r=1,2,3,4,5, \ldots, n$.
REmark 3.1. - The principal terms of the sequence $\Sigma_{p_{n}}$ are obtained taking the terms of the sequence $\Sigma_{p_{n-1}}$ that are in the interval

$$
] p_{n}, 2 \cdot 3 \cdot 5 \cdot 7 \cdot \ldots \cdot p_{n}[
$$

and deleting those terms that are of the form

$$
p_{n} \cdot p \quad \text { or } \quad p_{n} \cdot p-2,
$$

where p is prime greater than or equal to p_{n} or p is composite with prime factors greater than or equal to p_{n}. Consequentely the principal terms of the sequence $\Sigma_{p_{n}}$ are distributed in the interval $] p_{n}, 2 \cdot 3 \cdot 5 \cdot 7 \cdot \ldots \cdot p_{n}[$.

The following definitions will be used in the sequel.
Definition 3.1. - The number

$$
\varrho_{n}=\frac{2 \cdot 3 \cdot 5 \cdot 7 \cdot \ldots \cdot p_{n}}{1 \cdot 3 \cdot 5 \cdot 9 \cdot 11 \cdot 15 \cdot \ldots \cdot\left(p_{n}-2\right)}
$$

that is the quotient of the monotony constant by the period of the sequence $\Sigma_{p_{n}}$, is called mean distance between two consecutive terms of $\Sigma_{p_{n}}$.

Definition 3.2. - Let (a, b) an interval $\left(a \geqslant p_{n}\right)$. The number

$$
\frac{b-a}{\varrho_{n}}
$$

is called mean number of the terms of the sequence $\Sigma_{p_{n}}$ that are in the interval (a, b).

We have also the following theorems
Theorem 3.2. - For every prime number $p_{n}(n \geqslant 2)$ all the terms of the sequence $\Sigma_{p_{n}}$ that are in the interval $\left[p_{n}^{2}-2, p_{n+1}^{2}-2[\right.$ are terms of the sequence $\left\{T_{n}\right\}$. Moreover if a term of the sequence $\left\{T_{n}\right\}$ is in the interval $\left[p_{n}^{2}-\right.$ $2, p_{n+1}^{2}-2\left[\right.$, then it is a term of the sequence $\Sigma_{p_{n}}$.

Proof. - Let p be an arbitrary term of the sequence $\Sigma_{p_{n}}$ such that

$$
p \in\left[p_{n}^{2}-2, p_{n+1}^{2}-2[.\right.
$$

For the theorem $3.1 p$ is not divisible by $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$ and then p is prime. Moreover, again for the theorem 3.1 and for the observation contained in the proof of theorem 2.1, also $p+2$ is not divisible by $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$ and therefore $p+2$ is prime too. The second part of the statement is obvious.

Theorem 3.3. - The set $\left\{T_{n}, \forall n \in \mathbb{N}\right\}$ is infinite (and therefore there are infinitely many twin primes) if and only if there exists a subsequence

$$
\left\{\left[p_{n_{k}}^{2}-2, p_{n_{k}+1}^{2}-2[\}\right.\right.
$$

such that every interval $\left[p_{n_{k}}^{2}-2, p_{n_{k}+1}^{2}-2[\right.$ contains at least a term of the sequence $\Sigma_{p_{n_{k}}}$.

Proof. - Let the set $\left\{T_{n}, \forall n \in \mathbb{N}\right\}$ be infinite. Then we define $p_{n_{1}}$ a prime such that

$$
11 \in\left[p_{n_{1}}^{2}-2, p_{n_{1}+1}^{2}-2[\right.
$$

For the theorem 3.2 we have that 11 is a term of the sequence $\Sigma_{p_{n_{1}}}$. Now we take $T_{k_{1}}>p_{n_{1}+1}^{2}-2$ and denote by $p_{n_{2}}\left(n_{2}>n_{1}\right)$ a prime such that

$$
T_{k_{1}} \in\left[p_{n_{2}}^{2}-2, p_{n_{2}+1}^{2}-2[;\right.
$$

For the theorem 3.2 we have that $T_{k_{1}}$ is a term of the sequence $\Sigma_{p_{n_{2}}}$. Similarly we take $T_{k_{2}}>p_{n_{2}+1}^{2}-2$ and denote by $p_{n_{3}}\left(n_{3}>n_{2}\right)$ a prime such that

$$
T_{k_{2}} \in\left[p_{n_{3}}^{2}-2, p_{n_{3}+1}^{2}-2[;\right.
$$

Again for the theorem 3.2 we have that $T_{k_{2}}$ is a term of the sequence $\Sigma_{p_{n_{3}}}$. Because the reasoning can be iterated we have proved the «only if» part of the statement. The «if» part of the statement is obvious.

Theorem 3.4. - The mean number $\sigma_{p_{n}}$ of the terms of the sequence $\Sigma_{p_{n}}$ that are in the interval $\left[p_{n}^{2}-2, p_{n+1}^{2}-2[\right.$ satisfies the condition

$$
\sigma_{p_{n}} \geqslant 19 \quad \forall p_{n} \geqslant 661 .
$$

Proof. - For the definitions 3.1 and 3.2 we have

$$
\sigma_{p_{n}}=\frac{p_{n+1}^{2}-p_{n}^{2}}{\frac{2 \cdot 3 \cdot 5 \cdot 7 \cdot \ldots \cdot p_{n}}{1 \cdot 3 \cdot 5 \cdot 9 \cdot 11 \cdot 15 \cdot \ldots \cdot\left(p_{n}-2\right)}} .
$$

Now it results

$$
\sigma_{p_{n}} \geqslant \frac{4 p_{n}}{\frac{2 \cdot 3 \cdot 5 \cdot 7 \cdot \ldots \cdot p_{n}}{1 \cdot 3 \cdot 5 \cdot 9 \cdot 11 \cdot 15 \cdot \ldots \cdot\left(p_{n}-2\right)}}
$$

But, putting

$$
S_{n}=\frac{4 p_{n}}{\frac{2 \cdot 3 \cdot 5 \cdot 7 \cdot \ldots \cdot p_{n}}{1 \cdot 3 \cdot 5 \cdot 9 \cdot 11 \cdot 15 \cdot \ldots \cdot\left(p_{n}-2\right)}}
$$

we have

$$
\frac{S_{n+1}}{S_{n}}=\frac{p_{n+1}-2}{p_{n}} \geqslant 1
$$

hence the sequence $\left\{S_{n}\right\}$ is not-decreasing. Because it results $S_{n} \geqslant 19$ for $p_{n}=$ 661, the thesis follows.

The previous theorems make plausible that the following proposition is true (but we cannot prove it) and therefore the set $\left\{T_{n}, \forall n \in \mathbb{N}\right\}$ is infinite.

Proposition 3.1. - The number of the terms of the sequence $\left\{T_{n}\right\}$ that are less than $p_{n+1}^{2}-2$ is approximatively given by

$$
\tau_{n}=2+\sum_{k=2}^{n} \frac{p_{k+1}^{2}-p_{k}^{2}}{\frac{2 \cdot 3 \cdot 5 \cdot 7 \cdot \ldots \cdot p_{k}}{1 \cdot 3 \cdot 5 \cdot 9 \cdot 11 \cdot 15 \cdot \ldots \cdot\left(p_{k}-2\right)}}
$$

and we have

$$
\lim _{n \rightarrow \infty} \tau_{n}=+\infty
$$

In the following table are listed the values of $\sigma_{p_{n}}, \varrho_{n}$ and μ_{n} in some intervals $\left[p_{n}^{2}-2, p_{n+1}^{2}-2\left[\right.\right.$, where $\sigma_{p_{n}}, \varrho_{n}$ have been defined previously and μ_{n} denotes the number of the terms of the sequence $\left\{T_{n}\right\}$ that are in the interval $\left[p_{n}^{2}-2, p_{n+1}^{2}-2[\right.$.

$\left[p_{n}^{2}-2\right.$,	$p_{n+1}^{2}-2[$	$\sigma_{p_{n}}$	ϱ_{n}
$\left[3^{2}-2\right.$,	$5^{2}-2[$	2.6	6
$\left[5^{2}-2\right.$,	$7^{2}-2[$	2.4	10
$\left[7^{2}-2\right.$,	$11^{2}-2[$	5.1	14
$\left[11^{2}-2\right.$,	$13^{2}-2[$	2.8	17.1
$\left[13^{2}-2\right.$,	$17^{2}-2[$	5.2	20.2
$\left[17^{2}-2\right.$,	$19^{2}-2[$	3.1	22.9
$\left[19^{2}-2\right.$,	$23^{2}-2[$	6.6	25.6
$\left[23^{2}-2\right.$,	$29^{2}-2[$	11	28.0
$\left[29^{2}-2\right.$,	$31^{2}-2[$	4	30
$\left[31^{2}-2\right.$,	$37^{2}-2[$	12.7	32.2
$\left[37^{2}-2\right.$,	$41^{2}-2[$	9.2	34
$\left[41^{2}-2\right.$,	$43^{2}-2[$	4.7	35.8
$\left[43^{2}-2\right.$,	$47^{2}-2[$	9.7	37.5

$$
\begin{array}{cccc}
{\left[47^{2}-2,\right.} & 53^{2}-2[& 15.3 & 39.2 \\
{\left[53^{2}-2,\right.} & 59^{2}-2[& 16.5 & 40.7 \\
{\left[59^{2}-2,\right.} & 61^{2}-2[& 5.7 & 42 \\
{\left[61^{2}-2,\right.} & 67^{2}-2[& 17.6 & 43.6 \\
{\left[89^{2}-2,\right.} & 97^{2}-2[& 29 & 51 \\
{\left[151^{2}-2,\right.} & 157^{2}-2[& 21.9 & 84.2 \\
{\left[283^{2}-2,\right.} & 293^{2}-2[& 54 & 106.5 \\
{\left[421^{2}-2,\right.} & 431^{2}-2[& 71 & 119.8 \\
{\left[661^{2}-2,\right.} & 673^{2}-2[& 115.5 & 138.6 \\
{\left[953^{2}-2,\right.} & 967^{2}-2[& 175.7 & 153 \\
{\left[1361^{2}-2,\right.} & 1367^{2}-2[& 97 & 168.8 \\
{\left[1709^{2}-2,\right.} & 1721^{2}-2[& 228.7 & 179.9 \\
{\left[2027^{2}-2,\right.} & 2029^{2}-2[& 43 & 187.8 \\
{\left[2411^{2}-2,\right.} & 2417^{2}-2[& 147.3 & 196.6 \\
{\left[2903^{2}-2,\right.} & 2909^{2}-2[& 169.3 & 206 \\
{\left[3203^{2}-2,\right.} & 3209^{2}-2[& 182.8 & 210.5 \\
{\left[3449^{2}-2,\right.} & 3457^{2}-2[& 258 & 214.2 \\
{\left[3659^{2}-2,\right.} & 3671^{2}-2[& 403.9 & 217.7 \\
{\left[3803^{2}-2,\right.} & 3821^{2}-2[& 624.2 & 219.8 \\
{\left[4093^{2}-2,\right.} & 4099^{2}-2[& 219.6 & 223.8
\end{array}
$$

REFERENCES

[1] R. Crandall - C. Pomerance, Prime Numbers A Computational Perspective, Springer-Verlag New York (2001).
[2] G. Fiorito, On Properties of Periodically Monotone Sequences, Applied Mathematics and Computation, 72 (1995), 259-275.
[3] R. K. Guy, Unsolved problems in Number Theory, Springer-Verlag New York (1994).
[4] G. Hardy - E. Wright, An Introduction to the Theory of Numbers, Clarendon Press Oxford (1954).
[5] K. Ireland - M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag New York (1981).
[6] M. R. Murty, Problems in Analytic Number Theory, Springer-Verlag (1999).
[7] M. B. Nathanson, Elementary Methods in Number Theory, Springer-Verlag (1999).

Dipartimento di Matematica e Informatica Università di Catania viale Andrea Doria 6, Italy; e-mail: fiorito@dmi.unict.it

Pervenuta in Redazione
l's gennaio 2004

