Di Fazio, Giuseppe and Zamboni, Pietro: 
Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces
 Bollettino dell'Unione Matematica Italiana Serie 8 9-B (2006), fasc. n.2, p. 485-504,  (English)
pdf (447 Kb), djvu (170 Kb).  | MR 2233147  | Zbl 1178.35163 
Sunto
In questa nota proviamo la disuguaglianza di Harnack per le soluzioni deboli di una equazione sub-ellittica quasilineare del tipo \begin{equation*}\tag{*}\sum_{J=1}^{m} X_{j}^{*}A_{j}(x, u(x), Xu(x)) + B(x, u(x), Xu(x)) = 0,\end{equation*} dove $X_{1}, \ldots, X_{m}$ denotano un sistema non commutativo di campi vettoriali localmente lipschitziani. Come conseguenza otteniamo la continuità delle soluzioni deboli della (*).
Referenze Bibliografiche
[2] 
L. CAPOGNA - 
D. DANIELLI - 
N. GAROFALO, 
An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, 
Comm. P.D.E., 
18 (
1993), 1765-1794. | 
fulltext (doi) | 
MR 1239930 | 
Zbl 0802.35024[4] 
F. CHIARENZA - 
E. FABES - 
N. GAROFALO, 
Harnack's inequality for Schrödinger operators and continuity of solutions, 
Proc. A.M.S., 
98 (
1986), 415-425. | 
fulltext (doi) | 
MR 857933 | 
Zbl 0626.35022[5] 
D. DANIELLI, 
A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, 
Potential Analysis, 
115 (
1999), 387-413. | 
fulltext (doi) | 
MR 1719837 | 
Zbl 0940.35057[6] 
D. DANIELLI - 
N. GAROFALO - 
D. NHIEU, 
Trace inequalities for Carnot-Caratheodory spaces and applications, 
Ann. Scuola Norm. Sup. Pisa, 
4 (
1998), 195-252. | 
fulltext EuDML | 
MR 1664688 | 
Zbl 0938.46036[8] 
G. DI FAZIO - 
P. ZAMBONI Hölder continuity for quasilinear subelliptic equations in Carnot Caratheodory spaces, 
Math. Nachr. 272 (
2004), 3-10. | 
fulltext (doi) | 
MR 2079757 | 
Zbl 1149.35347[9] O.A. LADYZHENSKAYA - N. URALCEVA, Linear and quasilinear elliptic equations, Academic Press (1968).
[10] 
G. LIEBERMAN, 
Sharp forms of Estimates for Subsolutions and Supersolutions of Quasilinear Elliptic Equations Involving Measures, 
Comm. P.D.E., 
18 (
1993), 1191-1212. | 
fulltext (doi) | 
MR 1233190 | 
Zbl 0802.35041[11] 
M.A. RAGUSA - 
P. ZAMBONI, 
Local regularity of solutions to quasilinear elliptic equations with general structure, 
Communications in Applied Analysis, 
3 (
1999), 131-147. | 
MR 1669745 | 
Zbl 0922.35050[13] 
J.M. RAKOTOSON - 
W.P. ZIEMER, 
Local behavior of solutions of quasilinear elliptic equations with general structure, 
Trans. A. M. S., 
319 (
1990), 747-764. | 
fulltext (doi) | 
MR 998128 | 
Zbl 0708.35023[15] 
J. SERRIN - 
H. ZOU, 
Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, 
Acta Math., 
189, n. 1 (
2002), 79-142. | 
fulltext (doi) | 
MR 1946918 | 
Zbl 1059.35040[16] 
P. ZAMBONI, 
Harnack's inequality for quasilinear elliptic equations with coefficients in Morrey spaces, 
Rend. Sem. Mat. Univ. Padova, 
89 (
1993), 87-96. | 
fulltext EuDML | 
MR 1229045 | 
Zbl 0802.35043[17] 
P. ZAMBONI, 
Local boundedness of solutions of quasilinear elliptic equations with coefficients in Morrey spaces, 
Boll. Un. Mat. It., 
8-B (
1994), 985-997. | 
MR 1315830 | 
Zbl 0827.35040[18] 
P. ZAMBONI, 
Local behavior of solutions of quasilinear elliptic equations with coefficients in Morrey Spaces, 
Rendiconti di Matematica, Serie VII, 
15 (
1995), 251-262. | 
MR 1339243 | 
Zbl 0832.35046[19] 
P. ZAMBONI, 
Unique continuation for non-negative solutions of quasilinear elliptic equations, 
Bull. Austral. Math. Soc., 
64 (
2001), 149-156. | 
fulltext (doi) | 
MR 1848087 | 
Zbl 0989.47037