Bollettino

Unione Matematica Italiana

Boumediene Abdellaoui, Veronica Felli, Ireneo Peral

 Existence and nonexistence results for

 Existence and nonexistence results for quasilinear elliptic equations involving the quasilinear elliptic equations involving the p-Laplacian

 p-Laplacian}

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 9-B (2006), n.2, p. 445-484.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2006_8_9B_2_445_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2006.

Existence and Nonexistence Results for Quasilinear Elliptic Equations Involving the p-Laplacian.

Boumediene Abdellaoui - Veronica Felli - Ireneo Peral (*)

Sunto. - L'articolo riguarda lo studio di un'equazione ellittica quasi-lineare con il plaplaciano, caratterizzata dalla presenza di un termine singolare di tipo Hardy ed una nonlinearità critica. Si dimostrano dapprima risultati di esistenza e non esistenza per l'equazione con un termine singolare concavo. Quindi si passa a studiare il caso critico legato alla disuguaglianza di Hardy, fornendo una descrizione del comportamento delle soluzioni radiali del problema limite e ottenendo risultati di esistenza e molteplicità mediante metodi variazionali e topologici.

Summary. - The paper deals with the study of a quasilinear elliptic equation involving the p-laplacian with a Hardy-type singular potential and a critical nonlinearity. Existence and nonexistence results are first proved for the equation with a concave singular term. Then we study the critical case related to Hardy inequality, providing a description of the behavior of radial solutions of the limiting problem and obtaining existence and multiplicity results for perturbed problems through variational and topological arguments.

1. - Introduction.

In this paper we study the following elliptic problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\frac{\lambda h(x)}{|x|^{p}}|u|^{q-1} u+g(x)|u|^{p^{*}-1} u, \quad \text { in } \mathbb{R}^{N}, \tag{1}\\
u(x)>0, \quad u \in \mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

where $N \geqslant 3, \lambda>0,0<q \leqslant p-1,1<p<N$, and $p^{*}=N p /(N-p)$ is the critical Sobolev exponent. Here $\mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right)$ denotes the space obtained as the com-
(*) First and third authors partially supported by Project BFM2001-0183. Second author supported by Italy MIUR, national project «Variational Methods and Nonlinear Differential Equations».
pletion of the space of smooth functions with compact support with respect to the norm

$$
\|u\|=\left(\int_{\mathbb{R}^{N}}|\nabla u|^{p} d x\right)^{1 / p} .
$$

Notice that the potential $1 /|x|^{p}$ is related to the Hardy-Sobolev inequality. More precisely we have the following result.

Lemma 1.1 (Hardy-Sobolev inequality). - Suppose $1<p<N$. Then for all $u \in D^{1, p}\left(\mathbb{R}^{N}\right)$, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|u|^{p}|x|^{-p} d x \leqslant \Lambda_{N, p}^{-1} \int_{\mathbb{R}^{N}}|\nabla u|^{p} d x, \quad \Lambda_{N, p}=\left(\frac{N-p}{p}\right)^{p} . \tag{2}
\end{equation*}
$$

Moreover $\Lambda_{\bar{N}, p}^{-1}$ is optimal and it is not achieved.
In bounded domains the above problem has been studied in [2], [5], [7], [11], [12], [13], [14] and [18] (see also the references in these papers). In the whole \mathbb{R}^{N} and for $p=2$ there are some results in [21] and in [1].

Let us briefly recall the known results for bounded domains and $h=g=1$, because it will be useful to give some insight to the problem in \mathbb{R}^{N}.

In the case in which $q=p-1$ and Ω is a starshaped domain with respect to the origin, a Pohozaev type argument proves that there is no positive solution in $W_{0}^{1, p}(\Omega)$. If $q>p-1$ and $h(x) \equiv 1$, there is no positive solution even in the stronger sense of entropy solutions (in the case $p=2$ this notion of solution is equivalent to the distributional one). This nonexistence result is also true in the case $q=p-1$ and $\lambda>\Lambda_{N, p}$.

Finally if $0<q<p-1$, there exists some $\lambda^{*}>0$ such that the problem has solution for $\lambda \in\left(0, \lambda^{*}\right]$ and has no solution if $\lambda>\lambda^{*}$.

This paper is organized as follows. Section 2 is devoted to the study of the case $q<p-1$; we prove the existence of $\lambda^{*}>0$ such that for any $\lambda \leqslant \lambda^{*}$ there exists a positive solution. Some results on comparison of solutions and nonexistence for large λ are also obtained.

Section 3 deals with the case $q=p-1, h \equiv g \equiv 1$, and $0<\lambda<\Lambda_{N, p}$. In this case we prove the existence of a one dimensional manifold of positive solutions. In subsection 3.2 we analyze the behaviour of radial solutions and we get an uniqueness result modulo rescaling. Notice that, in the case $p=2$, the result obtained by Terracini in [25] gives a complete classification of solutions since moving plane method can be applied in such a case.

Section 4 is devoted to the study of nonexistence and existence for the case $q=p-1, g \equiv 1$, and h satisfying suitable conditions. We will use the concen-tration-compactness principle by P.L. Lions to prove that the Palais-Smale
condition holds below some critical threshold, thus obtaining existence results under some condition on h. The same analysis can be carried out if we assume that $h \equiv 1$ and g satisfies some convenient conditions.

In the last section multiplicity of solutions is proved in the case in which $h \equiv 1$ and g satisfies some conditions. Such multiplicity results are obtained by using some variational and topological argument as in [1].

	h	Ω bounded	$\Omega=\mathbb{R}^{N}$
$q<p-1$	nonconstant	existence	existence
$q<p-1$	constant	existence	non existence
$q=p-1$	constant	non existence in starshaped domains	existence
$q>p-1$	constant	non existence	non existence

Acknowledgment. Part of this work was carried out while the second author was visiting Universidad Autónoma of Madrid; she wishes to express her gratitude to Departamento de Matemáticas of Universidad Autónoma for its warm hospitality.

2. - The concave case related to the p-Laplacian.

Throughout this section we assume that $0<q<p-1$ and $g \equiv 1$, namely we deal with the following problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\frac{\lambda h(x) u^{q}}{|x|^{p}}+u^{p^{*}-1}, \quad \text { in } \mathbb{R}^{N} \tag{3}\\
u(x)>0, \quad u \in \mathcal{O}^{1, p}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

where $0<q<p-1$ and h is a positive function such that
(h)

$$
\int_{\mathbb{R}^{N}} \frac{h^{\alpha}(x)}{|x|^{p}} d x<\infty \quad \text { where } \alpha=\frac{p}{p-(q+1)}
$$

For simplicity of notation we set

$$
\|h\|_{L^{\alpha}\left(|x|^{-p} d x\right)}:=\left(\int_{\mathbb{R}^{N}} \frac{h^{\alpha}(x)}{|x|^{p}} d x\right)^{\frac{p-(q+1)}{p}} .
$$

We will use the following version of the well known Picone's Identity in [19]. For the proof we refer to [2](see also [3]).

Theorem 2.1. - If $u \in \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right), u \geqslant 0, v \in \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right),-\Delta_{p} v \geqslant 0$ is a bounded Radon measure, $v \geqslant 0$ and not identically zero, then

$$
\int_{\mathbb{R}^{N}}|\nabla u|^{p} \geqslant \int_{\mathbb{R}^{N}} \frac{u^{p}}{v^{p-1}}\left(-\Delta_{p} v\right) .
$$

As an application of Theorem 2.1, we get the following lemma, the proof of which can be obtained as a simple modification of the argument used in [2].

LEMMA 2.2. - Let $u, v \in \mathscr{\partial}^{1, p}\left(\mathbb{R}^{N}\right)$ be such that

$$
\begin{align*}
& \left\{\begin{array}{l}
-\Delta_{p} u \geqslant \frac{h(x) u^{q}}{|x|^{p}}, \quad \text { in } \mathbb{R}^{N}, \\
u>0 \text { in } \mathbb{R}^{N}, \quad u \in \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right),
\end{array}\right. \tag{4}\\
& \left\{\begin{array}{l}
-\Delta_{p} v \leqslant \frac{h(x) v^{q}}{|x|^{p}} \text { in } \mathbb{R}^{N}, \\
v>0 \text { in } \mathbb{R}^{N}, \quad v \in \mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right),
\end{array}\right.
\end{align*}
$$

where $0<q<p-1$ and h is a nonnegative function such that $h \not \equiv 0$. Then $u \geqslant v$ in \mathbb{R}^{N}.

As a direct consequence we have the following lemma.
Lemma 2.3. - The problem

$$
\left\{\begin{array}{l}
-\Delta_{p} w=\frac{h(x)}{|x|^{p}} w^{q} \text { in } \mathbb{R}^{N} \tag{6}\\
w>0 \text { in } \mathbb{R}^{N}, \quad w \in \mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

with $q<p-1$ and h satisfying (h), has a unique positive solution.
Proof. - Existence can be proved by using a classical minimizing argument. To obtain uniqueness one can use Lemma 2.2.

Week solutions to problem (3) can be found as critical points of the functional

$$
\begin{equation*}
J_{\lambda}(u)=\frac{1}{p} \int_{\mathbb{R}^{N}}|\nabla u|^{p} d x-\frac{\lambda}{q+1} \int_{\mathbb{R}^{N}} \frac{h(x)}{|x|^{p}}|u|^{q+1} d x-\frac{1}{p^{*}} \int_{\mathbb{R}^{N}}|u|^{p^{*}} d x \tag{7}
\end{equation*}
$$

Using Hölder, Hardy, and Sobolev inequalities we obtain that for some positi-
ve constants c and c_{1}

$$
J_{\lambda}(u) \geqslant \frac{1}{p}\|u\|_{\Phi^{1}, p\left(\mathbb{R}^{N}\right)}^{p}-\frac{\lambda c}{q+1}\|u\|_{\Phi^{1, p}\left(\mathbb{R}^{N}\right)}^{q+1}-\frac{c_{1}}{p^{*}}\|u\|_{\Phi^{1, p}\left(\mathbb{R}^{N}\right)}^{\|^{*}}, \quad \forall u \in \mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right) .
$$

Therefore we get the existence of $a \in \mathbb{R}^{N}, r_{0}>0$, and $\lambda_{1}>0$ such that for any $\lambda \in\left[0, \lambda_{1}\right]$ there holds

1) $J_{\lambda}(u)$ is bounded from below in $B_{r_{0}} \equiv\left\{u \in \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right):\|u\|_{\mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right)}<r_{0}\right\}$ and $I=\inf \left\{J_{\lambda}(u)\right.$ for $\left.u \in B_{r_{0}}\right\}<0$;
2) $J_{\lambda}(u) \geqslant a>I$ for $\|u\|=r_{0}$.

To prove that the minimum is achieved we need the following lemma.
Lemma 2.4. - Let $C(N, p, q, h)$ be such that

$$
\begin{aligned}
\frac{1}{N} s^{p}-\lambda \Lambda_{N, p^{p}}^{-\frac{q+1}{,}}\left(\frac{1}{q+1}-\frac{1}{p^{*}}\right)\|h\|_{L^{\alpha}\left(\left.|x|\right|^{-p} d x\right)} s^{q+1} & \geqslant \\
& -C(N, p, q, h) \lambda^{\frac{p}{p-q-1}}, \quad \forall s>0
\end{aligned}
$$

Then for any sequence $\left\{u_{n}\right\} \subset \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right)$ with
(8) $J_{\lambda}\left(u_{n}\right) \rightarrow c<c(\lambda) \equiv \frac{1}{N} S^{\frac{N}{p}}-C(N, p, q, h) \lambda^{\frac{p}{p-q-1}} \quad$ and $\quad J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$,
where S is the Sobolev constant for the p-Laplacian, there exists a subsequence that converges strongly in $\mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right)$.

Proof. - We use the following result which can be proved by adapting the argument used in [6] for the Laplacian.

Lemma 2.5. - Let $\left\{u_{n}\right\} \subset \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right)$ be a sequence satisfying the hypotheses of Lemma 2.4. Then for any $\eta>0$ there exists $\varrho>0$ such that

$$
\int_{|x|>\varrho}\left|\nabla u_{n}\right|^{p} d x<\eta
$$

We come back to the proof of Lemma 2.4. Since $\left\{u_{n}\right\}$ is a Palais-Smale sequence, it is bounded, i.e., $\left\|u_{n}\right\|_{\Phi^{1, p}\left(\mathbb{R}^{N}\right)} \leqslant M$, then up to a subsequence still denoted by $\left\{u_{n}\right\}$,

1. $u_{n} \rightharpoonup u_{0}$ in $\partial^{1, p}\left(\mathbb{R}^{N}\right)$;
2. $u_{n} \rightarrow u_{0}$ almost everywhere and in $L_{\text {loc }}^{\alpha}\left(\mathbb{R}^{N}\right)$ for any $\alpha \in\left[1, p^{*}\right)$.

Using the Concentration Compactness Principle by P. L. Lions (see [15]) we conclude that $\left\{u_{n}\right\}$ satisfies

1. $\left|\nabla u_{n}\right|^{p} \rightharpoonup d \mu \geqslant\left|\nabla u_{0}\right|^{p}+\sum_{j \in J} \mu_{j} \delta_{j}$.
2. $\left|u_{n}\right|_{p}^{p^{*}} \rightharpoonup d v=\left|u_{0}\right|^{p^{*}}+\sum_{j \in J}^{j \in J} v_{j} \delta_{j}$.
3. $S v^{\frac{p}{p^{*}}} \leqslant \mu_{j}$ for any $j \in J$, where J is an at most countable set.

Then it is not difficult to prove that either $\boldsymbol{v}_{j}=0$ or $\boldsymbol{v}_{j}=\mu_{j}$. Therefore, if the singular part is not identically zero, i.e., if $v_{j} \neq 0$, we have that $v_{j} \geqslant S^{\frac{1}{p}}$. In view of hypothesis (h) and weak convergence of $\left\{u_{n}\right\}$, Vitali's Convergence Theorem yields

$$
\int_{\mathbb{R}^{N}} \frac{h(x)\left|u_{n}\right|^{q+1}}{|x|^{p}} \rightarrow \int_{\mathbb{R}^{N}} \frac{h(x)\left|u_{0}\right|^{q+1}}{|x|^{p}}
$$

If we assume that $v_{j} \neq 0$ for some j, then, for $\varepsilon>0$, we have

$$
\begin{aligned}
& c+\varepsilon>J_{\lambda}\left(u_{n}\right)-\frac{1}{p^{*}}\left(J^{\prime}\left(u_{n}\right), u_{n}\right)= \\
& \frac{1}{N_{\mathrm{R}^{N}}} \int\left|\nabla u_{n}\right|^{p}-\lambda\left(\frac{1}{q+1}-\frac{1}{p^{*}}\right) \int_{\mathrm{R}^{N}} \frac{h(x)\left|u_{n}\right|^{q+1}}{|x|^{p}}
\end{aligned}
$$

and, since ε is arbitrary, using the definition of $C(N, p, q, h)$ we obtain that

$$
c(\lambda)>c \geqslant \frac{1}{N} S^{\frac{N}{p}}-C(N, p, q, h) \lambda^{\frac{p}{p-q-1}}
$$

which is a contradiction with the hypothesis on $c(\lambda)$. Then $v_{j}=\mu_{j}=0$ for all j and $u_{n} \rightarrow u_{0}$ strongly in $\mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right)$.

Notice that for λ small, $c(\lambda)>0$, therefore since $I<0$ we get the existence of $u_{0} \in J^{1, p}\left(\mathbb{R}^{N}\right)$ such that $J_{\lambda}\left(u_{0}\right)=J_{\lambda}\left(\left|u_{0}\right|\right)=I<0$. Then problem (3) has at least a positive solution for λ small.

We set

$$
\mathcal{A}=\{\lambda>0 \text { such that problem (3) has a positive solution }\},
$$

then using Lemma 2.2 and a monotonicity argument, we can prove easily that \mathcal{G} is an interval and that, for all $\lambda \in \mathcal{Q}$, problem (3) has a minimal solution u_{λ}. We prove now that \mathcal{A} is bounded. More precisely we have the following result.

Theorem 2.6. - Let $\lambda^{*}=\sup \{\lambda \mid$ Problem (3) has solution $\}$, then $\lambda^{*}<\infty$.
Theorem 2.6 is a particular case of a result proved in [11]. We formulate here a more general theorem that extends the result in [11] and gives a more precise estimate on λ^{*}. Namely we consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\frac{\lambda h(x) u^{q}}{|x|^{p}}+g(x) u^{p^{*}-1} \text { in } \mathbb{R}^{N} \tag{9}\\
u>0 \text { in } \mathbb{R}^{N}, \quad u \in \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right)
\end{array}\right.
$$

where g is a bounded positive function and q and h are as above. We set

$$
\begin{equation*}
\bar{\lambda}^{*}=\sup \{\lambda \mid \text { Problem }(9) \text { has solution }\} . \tag{10}
\end{equation*}
$$

If the supports of h and g have nonempty intersection, it was proved in [11] that $\bar{\lambda}^{*}<\infty$. The following theorem states that the same result holds true in the general case.

Theorem 2.7. - Let $\bar{\lambda}^{*}$ be defined in (10) then $\bar{\lambda}^{*}<\infty$.
Proof. - When $\operatorname{supp}(h) \cap \operatorname{supp}(g) \neq \emptyset$ the result is known (see for instance [11]). We prove the result in the general case. Without loss of generality we can assume that $\lambda>1$, if not we are done. Let u_{λ} be a positive solution to problem (3) with fixed λ. Then $-\Delta_{p} u_{\lambda} \geqslant \lambda|x|^{-p} h(x) u_{\lambda}^{q}$. Let v_{1} be the unique solution to problem

$$
\left\{\begin{array}{l}
-\Delta_{p} v=\frac{h(x)}{|x|^{p}} v^{q}, \quad x \in \mathbb{R}^{N}, \tag{11}\\
v>0, \quad v \in \mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

see Lemma 2.3. We set $v_{\lambda}=\lambda^{\frac{1}{p-(q+1)}} v_{1}$, then $-\Delta_{p} v_{\lambda} \leqslant \lambda|x|^{-p} h(x) v_{\lambda}^{q}$. Since u_{λ} is a supersolution to problem (3), then from Lemma 2.2 we obtain that $u_{\lambda} \geqslant$ $v_{\lambda}=\lambda^{\overline{p-(q+1)}} v_{1}$. Consider the following eigenvalue problem

$$
\left\{\begin{array}{l}
-\Delta_{p} w=m\left(p^{*}-p\right) g(x) u_{\lambda}^{p^{*}-p}|w|^{p-2} w \quad \text { in } \mathbb{R}^{N}, \\
w \in \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right) .
\end{array}\right.
$$

Let m_{1} be the first eigenvalue and w_{1} the corresponding normalized eigenfunction. Then we have

$$
m_{1}=\min _{w \in \mathscr{A}^{1, p}\left(\mathbb{R}^{N}\right)} \frac{\int_{\mathbb{R}^{N}}|\nabla w|^{p} d x}{\int_{\mathbb{R}^{N}}\left(p^{*}-p\right) g(x) u_{\lambda}^{p^{*}-p}|w|^{p} d x}
$$

Since $u_{\lambda}^{p^{*}-p} \in L^{\frac{N}{p}}\left(\mathbb{R}^{N}\right)$ and $u_{\lambda}>0$, the minimum is achieved. Now by using

Theorem 2.1 we obtain that

$$
\int_{\mathbb{R}^{N}}\left|\nabla w_{1}\right|^{p} d x-\int_{\mathbb{R}^{N}} \frac{-\Delta_{p} u_{\lambda}}{u_{\lambda}^{p-1}} w_{1}^{p} \geqslant 0 .
$$

Since $-\Delta_{p} u_{\lambda} \geqslant g(x) u_{\lambda}^{p^{*}-1}$ we conclude that

$$
\int_{\mathbb{R}^{N}}\left|\nabla w_{1}\right|^{p} d x-\int_{\mathbb{R}^{N}} g(x) w_{1}^{p} u_{\lambda}^{p^{*}-p} \geqslant 0 .
$$

By the definition of w_{1} we get

$$
\int_{\mathbb{R}^{N}}\left|\nabla w_{1}\right|^{p}=m_{1}\left(p^{*}-p\right) \int_{\mathbb{R}^{N}} g(x) w_{1}^{p} u_{\lambda}^{p^{*}-p} .
$$

Therefore we obtain

$$
m_{1} \geqslant \frac{1}{p^{*}-p}
$$

Using the definition of m_{1} we obtain that

$$
\frac{1}{p^{*}-p} \leqslant m_{1} \leqslant \inf _{w \in \mathscr{D}^{1}, p_{\left(\mathbb{R}^{N}\right)}} \frac{\int_{\mathbb{R}^{N}}|\nabla w|^{p} d x}{\left(p^{*}-p\right) \int_{\mathbb{R}^{N}} g(x) u_{\lambda}^{p^{*}-p}|w|^{p} d x}
$$

Since $u_{\lambda} \geqslant \lambda^{\frac{1}{p-(q+1)}} v_{1}$, we have

$$
1 \leqslant \inf _{w \in \mathbb{O}^{1, p}\left(\mathbb{R}^{N}\right)} \frac{\int_{\mathbb{R}^{N}}|\nabla w|^{p} d x}{\lambda^{\frac{p^{*}-p}{p-(q+1)}} \int_{\mathbb{R}^{N}} g(x) v_{1}^{p^{*}-p}|w|^{p}}
$$

So we get

$$
\lambda^{\frac{p^{*}-p}{p-(q+1)}} \leqslant \inf _{w \in \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right)} \frac{\int_{\mathbb{R}^{N}}|\nabla w|^{p} d x}{\int_{\mathbb{R}^{N}} g(x) v_{1}^{p^{*}-p}|w|^{p} d x}=\bar{m}
$$

Then $\lambda^{\frac{p^{*}-p}{p-(q+1)}} \leqslant \bar{m}$ where \bar{m} is the first eigenvalue to problem

$$
\left\{\begin{array}{l}
-\Delta_{p} w=m\left(g(x) v_{1}^{p^{*}-p}\right)|w|^{p-2} w \text { in } \mathbb{R}^{N}, \\
w \in \mathscr{J}^{1, p}\left(\mathbb{R}^{N}\right) .
\end{array}\right.
$$

Then $\bar{\lambda}^{*}<\bar{m}^{\frac{p-(q+1)}{p^{*}-p}}$, and the proof is complete.
To prove that $\lambda^{*} \in \mathcal{G}$ the following lemma is in order.
Lemma 2.8. - Let u_{λ} be the minimal solution to problem (3), then $J_{\lambda}\left(u_{\lambda}\right)<0$.

Proof. - Fixed $\lambda_{0} \in \mathcal{G}$ and let $u_{\lambda_{0}}$ the minimal solution to (3) with $\lambda=\lambda_{0}$. Let

$$
M=\left\{u \in \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right), v_{\lambda_{0}} \leqslant u \leqslant u_{\lambda_{0}}\right\},
$$

where $v_{\lambda_{0}}$ is the unique positive solution to problem

$$
\begin{cases}-\Delta_{p} w=\lambda_{0} \frac{h(x)}{|x|^{p}} w^{q} & \text { in } \mathbb{R}^{N}, \\ w>0, & \text { in } \mathbb{R}^{N}, w \in \mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right)\end{cases}
$$

see Lemma 2.3. Then M is a convex closed set in $\circlearrowleft^{1, p}\left(\mathbb{R}^{N}\right)$. Since $J_{\lambda_{0}}$ is weakly lower semi continuous, bounded from below, and coercive in M, then we get the existence of $w_{0} \in M$ such that $\min _{M} J_{\lambda_{0}}(u)=J_{\lambda_{0}}\left(w_{0}\right)$. Hence for all $v \in M$ we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|\nabla w_{0}\right|^{p-2} \nabla w_{0} \nabla\left(v-w_{0}\right) d x \geqslant \int_{\mathbb{R}^{N}}\left(\frac{\lambda_{0} h(x) w_{0}^{q}}{|x|^{p}}+w_{0}^{p^{*}-1}\right)\left(v-w_{0}\right), \tag{12}
\end{equation*}
$$

and $v_{\lambda_{0}} \leqslant w_{0} \leqslant u_{\lambda_{0}}$. We claim that $w_{0}=u_{\lambda_{0}}$. Since $u_{\lambda_{0}}=\lim _{n \rightarrow \infty} u_{n}$ where u_{n} is defined by $u_{0}=v_{\lambda_{0}}$ and

$$
\left\{\begin{array}{l}
-\Delta_{p} u_{n+1}=\frac{\lambda_{0} h(x) u_{n}^{q}}{|x|^{p}}+u_{n}^{p^{*}-1} \text { in } \mathbb{R}^{N}, \tag{13}\\
u_{n}>0 \text { in } \mathbb{R}^{N}, \quad u_{n} \in \mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

we have just to prove that $u_{n} \leqslant w_{0}$ for all n. If $n=0$ the result is verified by the definition of w_{0}. Let $v_{1}=w_{0}+\left(u_{1}-w_{0}\right)_{+}$. Since $v_{\lambda_{0}} \leqslant u_{1} \leqslant u_{\lambda_{0}}$, then $v_{1} \in M$ and by using (12) we obtain that

$$
\int_{\mathbb{R}^{N}}\left|\nabla w_{0}\right|^{p-2} \nabla w_{0} \nabla\left(u_{1}-w_{0}\right)_{+} d x \geqslant \int_{\mathbb{R}^{N}}\left(\frac{\lambda_{0} h(x) w_{0}^{q}}{|x|^{p}}+w_{0}^{p^{*-1}}\right)\left(u_{1}-w_{0}\right)_{+} .
$$

Taking $\left(u_{1}-w_{0}\right)_{+}$as a test function in (13) with $n=0$ we obtain that

$$
\int_{\mathbb{R}^{N}}\left|\nabla u_{1}\right|^{p-2} \nabla u_{1} \nabla\left(u_{1}-w_{0}\right)_{+} d x=\int_{\mathbb{R}^{N}}\left(\frac{\lambda_{0} h(x) v_{\lambda_{0}}^{q}}{|x|^{p}}+v_{\lambda_{0}}^{p^{*}-1}\right)\left(u_{1}-w_{0}\right)_{+} .
$$

Then by using the fact that $v_{\lambda_{0}} \leqslant w_{0}$ we conclude that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}-\left|\nabla w_{0}\right|^{p-2} \nabla w_{0}\right) \cdot \nabla\left(u_{1}-w_{0}\right)_{+} d x \leqslant 0 . \tag{14}
\end{equation*}
$$

We set $D_{p}(x, y)=|x|^{p-2} x-|y|^{p-2} y$ where $x, y \in \mathbb{R}^{N}$, then we have the following inequality (see [22])

$$
\left\langle D_{p}(x, y), x-y\right\rangle \geqslant \begin{cases}C_{p}|x-y|^{p} & \text { if } p \geqslant 2 \tag{15}\\ C_{p} \frac{|x-y|^{2}}{(|x|+|y|)^{2-p}} & \text { if } p<2\end{cases}
$$

Therefore, by (14) and using (15), we conclude that $\left(u_{1}-w_{0}\right)_{+}=0$ and then $u_{1} \leqslant w_{0}$. Since the sequence $\left\{u_{n}\right\}$ is increasing, the result follows by an induction argument. Therefore $u_{n} \leqslant w_{0}$ and we conclude that $u_{\lambda_{0}} \leqslant w_{0}$. Hence $w_{0}=$ $u_{\lambda_{0}}$. Since $J_{\lambda_{0}}\left(w_{0}\right) \leqslant J_{\lambda_{0}}\left(v_{\lambda_{0}}\right)<0$, we conclude that $J_{\lambda_{0}}\left(u_{\lambda_{0}}\right)<0$.

We get now the following existence result.

Lemma 2.9. $-\lambda^{*} \in \mathcal{G}$.

Proof. - Let $\left\{\lambda_{n}\right\}$ be an increasing sequence such that $\lambda_{n} \uparrow \lambda^{*}$. Denote by u_{λ} the minimal solution to problem (3). From Lemma 2.8, we know that $J_{\lambda_{n}}\left(u_{\lambda_{n}}\right)<0$, which implies $\left\|u_{\lambda_{n}}\right\|_{\mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right)} \leqslant M$. Since the sequence $\left\{u_{\lambda_{n}}\right\}$ is an increasing sequence, we get the existence of $u_{\lambda^{*}}=\lim _{n \rightarrow \infty} u_{\lambda_{n}}$ which is a solution to (9) with $\lambda=\lambda^{*}$.

In the case in which $h \equiv 1$, we have the following nonexistence result.
Lemma 2.10. - Let u_{0} be a solution to the following problem
where $0<q<p-1$, then $u_{0} \equiv 0$.

Proof. - For $R \geqslant 1$, let us consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\frac{\lambda u^{q}}{|x|^{p}}+u^{p^{*}-1} \text { in } B_{R}(0), \tag{17}\\
u>0 \text { in } B_{R}(0), \quad u_{\mid \partial B_{R}(0)}=0 .
\end{array}\right.
$$

Let $\lambda_{R}^{*}=\max \{\lambda>0:$ problem (17) has a solution $\}$. By a rescaling argument we can prove that $\lambda_{\stackrel{*}{R}}^{R}=R^{-\frac{p}{p^{*}-p}}(p-q-1) ~ \lambda_{\hat{1}}^{*}$, hence $\lambda_{R}^{*} \rightarrow 0$ as $R \rightarrow \infty$. Let u_{0} be a positive solution to (16), then there exists $R_{0} \gg 1$ such that $\lambda_{R}^{\text {宸 }}=$ $R^{-\frac{p}{p^{*}-p}(p-q-1)} \lambda_{1}^{*}<\lambda$ for $R \geqslant R_{0}$. Since u_{0} is a super solution to (17) and v_{λ}, the solution of

$$
\left\{\begin{array}{l}
-\Delta_{p} v_{\lambda}=\frac{\lambda v_{\lambda}^{q}}{|x|^{p}} \text { in } B_{R}(0), \tag{18}\\
v_{\lambda}>0 \text { in } B_{R}(0), \quad v_{\lambda \mid \partial B_{R}(0)}=0,
\end{array}\right.
$$

is a subsolution of (17) such that $v_{\lambda} \leqslant u_{0}$, then by an iteration argument we can prove that problem (17) has a positive solution w such that $v_{\lambda} \leqslant w \leqslant u_{0}$ which is a contradiction with the definition of λ_{R}^{*}. Hence we conclude.

3. - The critical case related to Hardy inequality.

3.1. Existence result.

In this section we will study problem (1) with $h \equiv g \equiv 1$ and $q=p-1$, i.e.

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\lambda \frac{u^{p-1}}{|x|^{p}}+u^{p^{*}-1}, \quad x \in \mathbb{R}^{N} \tag{19}\\
u>0 \text { in } \mathbb{R}^{N}, \quad u \in \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right)
\end{array}\right.
$$

where $p^{*}=\frac{p N}{N-p}$ and $0<\lambda<\left(\frac{N-p}{p}\right)^{p}$. As a consequence of a Pohozaev type identity, one can see that problem (19) does not have nontrivial solution in any bounded starshaped domain with respect to the origin, see Lemma 3.7 of [12]. This motivates the work in \mathbb{R}^{N}.

The case $p=2$ has been studied in [25], where it is shown that problem (19) (for $p=2$) has a one dimensional manifold of positive solutions given by $z_{\mu}(r)=\mu^{\frac{-(N-2)}{2}} z_{\lambda}\left(\frac{r}{\mu}\right)$ where

$$
\begin{gathered}
z_{\lambda}(x)=\frac{c_{N}}{\left(|x|^{1-v_{\lambda}}\left(1+|x|^{2 v_{\lambda}}\right)\right)^{\frac{N-2}{2}}}, \\
v_{\lambda}=\left(1-\frac{4 \lambda}{(N-2)^{4}}\right)^{\frac{1}{2}} \text { and } c_{N}=\left(N(N-2) v_{\lambda}^{2}\right)^{\frac{N-2}{2}} .
\end{gathered}
$$

We will partially extend the result of [25] to the case of the p-laplacian, namely we will describe the behaviour of all radial positive solutions to equation (19). We set

$$
\begin{equation*}
Q_{\lambda}(u)=\int_{\mathbb{R}^{N}}|\nabla u|^{p} d x-\lambda \int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{p}} d x \tag{20}
\end{equation*}
$$

and

$$
K=\left\{\left.u \in D^{1, p}\left(\mathbb{R}^{N}\right)\left|\int_{\mathbb{R}^{N}}\right| u\right|^{p^{*}} d x=1\right\} .
$$

Let

$$
A(\lambda)=\inf _{u \in D^{1, p}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{Q_{\lambda}(u)}{\int_{\mathbb{R}^{N}}|x|^{-p}|u|^{p} d x} .
$$

The first result of this section is the following lemma.
Lemma 3.1. - Assume that $A(\lambda)<0$, then problem (19) has no positive solution.

Proof. - Arguing by contradiction, assume that $A(\lambda)<0$ and problem (19) has a positive solution u. Then since $A(\lambda)<0$ there exists $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that $Q_{\lambda}(\phi)<0$, i.e.

$$
\int_{\mathbb{R}^{N}}|\nabla \phi|^{p}-\lambda \int_{\mathbb{R}^{N}} \frac{|\phi|^{p}}{|x|^{p}}<0
$$

Since $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, from Theorem 2.1 we obtain that

$$
\int_{\mathbb{R}^{N}}|\nabla \phi|^{p} \geqslant \int_{\mathbb{R}^{N}} \frac{-\Delta_{p} u}{u^{p-1}}|\phi|^{p} .
$$

Therefore we get

$$
\int_{\mathbb{R}^{N}}|\nabla \phi|^{p}-\lambda \int_{\mathbb{R}^{N}} \frac{|\phi|^{p}}{|x|^{p}} \geqslant \int_{\mathbb{R}^{N}} u^{p^{*}-p}|\phi|^{p} \geqslant 0
$$

which yields a contradiction with the choice of ϕ. The proof is thereby complete.

Lemma 3.2. - Assume that $A(\lambda)>0$, then $Q_{\lambda}(u)$ is an equivalent norm to the norm of the space $\mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right)$.

Set

$$
\begin{equation*}
S_{\lambda}=\inf _{u \in K} Q_{\lambda}(u) \tag{21}
\end{equation*}
$$

It is easy to see that $S_{\lambda}>0$ and $S_{\lambda}<S$ where S is the best Sobolev constant for the embedding $\mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right) \subset L^{p^{*}}\left(\mathbb{R}^{N}\right)$. We prove now the following existence result.

Theorem 3.3. - Assume that $\lambda \in\left(0,\left(\frac{N-p}{p}\right)^{p}\right)$, then there exists $u_{0} \in K$ such that $S_{\lambda}=Q_{\lambda}\left(u_{0}\right)$. In particular there exists a positive constant c such that $c u_{0}$ is a positive solution of (19).

Proof. - Let $\left\{u_{n}\right\}$ be a minimizing sequence to (21). Since $\lambda \in$ $\left(0,\left(\frac{N-p}{p}\right)^{p}\right)$ and by classical Hardy inequality, we get that $\left\{u_{n}\right\}$ is bounded in $\mathscr{J}^{1, p}\left(\mathbb{R}^{N}\right)$. Therefore using the concentration-compactness principle, see [15], we get the existence of a sequence of positive numbers $\left\{\sigma_{n}\right\}$ such that the sequence $\bar{u}_{n}=\sigma_{n}^{-\frac{N-p}{N}} u_{n}\left(\frac{\cdot}{\sigma_{n}}\right)$ is relatively compact in $\mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right)$. The sequence $\left\{\bar{u}_{n}\right\}_{n}$ is also a minimizing one. We can get easily that $u_{0}=\lim _{n \rightarrow \infty} \bar{u}_{n} \in K$ and $Q_{\lambda}\left(u_{0}\right)=S_{\lambda}$.

Moreover u_{0} satisfies the following Euler-Lagrange equation

$$
\begin{equation*}
-\Delta_{p} u-\lambda \frac{u^{p-1}}{|x|^{p}}=S_{\lambda} u^{p^{*}-1} \tag{22}
\end{equation*}
$$

If we set $v=c u_{0}$ where $c=S_{\lambda^{p^{*}-p}}^{\frac{1}{2}}$ then v is a solution of (19).
Now we have the following result concerning the regularity of solutions to (19).

Remark 3.4. - Let u be any solution of (19), then $u \in C^{1, a}\left(\mathbb{R}^{N}-\{0\}\right)$.
Proof. - Let u_{0} be any solution. For $0<\varepsilon<R$, we set $\Omega=B(R) \backslash B(\varepsilon)$ where $B(\varepsilon)$ (resp. $B(R)$) is the ball in \mathbb{R}^{N} of center 0 and radius ε (resp. R). Since $u_{0} \in \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right)$, then $u_{0} \in W^{1 / p^{\prime}, p}(\partial B(\varepsilon))$ and $u_{0} \in W^{1 / p^{\prime}, p}(\partial B(R))$. Since u_{0} is a solution to problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\lambda \frac{u^{p-1}}{|x|^{p}}+u^{p^{*}-1}, \quad x \in \Omega \tag{23}\\
\left.u\right|_{\partial B(R)}=\left.u_{0}\right|_{\partial B(R)}, \\
\left.u\right|_{\partial B(R(\varepsilon))}=\left.u_{0}\right|_{\partial B(R(\varepsilon))}, \\
u>0 \text { in } \Omega, \quad u \in W^{1, p}(\Omega),
\end{array}\right.
$$

from [24] we get that $u_{0} \in C^{1, a}(\Omega)$. Since ε and R are arbitrary, we obtain the desired result.

It is easy to check that all dilations of u_{0} of the form $\sigma^{-\frac{N-p}{N}} u_{0}\left(\frac{\dot{\sigma}}{\sigma}\right)$ where $\sigma>0$ are also solutions of the minimizing problem (21). Therefore we get a family of solutions to problem (19). Moreover we have the following characterization of minimizers in problem (21).

Lemma 3.5. - All minimizers of (21) are radial.
Proof. - Since if $u_{0} \in \partial^{1, p}\left(\mathbb{R}^{N}\right)$ is a minimizer of S_{λ} (i.e $K\left(u_{0}\right)=1$ and $Q\left(u_{0}\right)=S_{\lambda}$) then the decreasing rearrangement u_{0}^{*} of u_{0} given by

$$
u_{0}^{*}(x)=\inf \left\{t>0:\left|\left\{y \in \mathbb{R}^{N}: u(y)>t\right\}\right| \leqslant \omega_{N}|x|^{N}\right\}
$$

where ω_{N} denotes the volume of the standard unit N-sphere (see [20]), is also a minimizer, so it satisfies the same Euler-Lagrange equation i.e

$$
\begin{equation*}
-\Delta_{p} u_{0}^{*}-\lambda \frac{\left(u_{0}^{*}\right)^{p-1}}{|x|^{p}}=S_{\lambda}\left(u_{0}^{*}\right)^{p^{*}-1} \tag{24}
\end{equation*}
$$

Notice that by the classical result by Polya-Szegö (see [20]) we obtain that

$$
\int_{\mathbb{R}^{N}}\left|\nabla u_{0}\right|^{p} d x \geqslant \int_{\mathbb{R}^{N}}\left|\nabla u_{0}^{*}\right|^{p} d x .
$$

Since u_{0}^{*} is a solution to (24) we obtain that

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left|\nabla u_{0}^{*}\right|^{p} d x=\int_{\mathbb{R}^{N}}\left(\lambda \frac{\left(u_{0}^{*}\right)^{p}}{|x|^{p}}+S_{\lambda}\left(u_{0}^{*}\right)^{p^{*}}\right) d x \geqslant \\
& \int_{\mathbb{R}^{N}}\left(\lambda \frac{\left|u_{0}\right|^{p}}{|x|^{p}}+S_{\lambda}\left|u_{0}\right|^{p^{*}}\right) d x=\int_{\mathbb{R}^{N}}\left|\nabla u_{0}\right|^{p} d x .
\end{aligned}
$$

Hence we conclude that $\int_{\mathbb{R}^{N}}\left|\nabla u_{0}^{*}\right|^{p} d x=\int_{\mathbb{R}^{N}}\left|\nabla u_{0}\right|^{p} d x$. Notice that u_{0}^{*} is strictly increasing, then $\left|\left\{\nabla u_{0}^{*}=0\right\}\right|=0$. Then from [8], there exists $x_{0} \in \mathbb{R}^{N}$ such that $u_{0}(\cdot)=u_{0}^{*}\left(\cdot+x_{0}\right)$. Since equation (22) is not invariant by translation we obtain that $x_{0}=0$ and the result follows.

3.2 The behavior of the radial solutions.

We study now the asymptotic behavior of all radial solutions of the problem (19).

Let $u(r)$ be a radial positive solution of (19), then

$$
\begin{equation*}
\left(r^{N-1}\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+r^{N-1}\left(\lambda \frac{u^{p-1}}{r^{p}}+u^{p^{*}-1}\right)=0 . \tag{25}
\end{equation*}
$$

We set
(26) $\quad t=\log r, \quad y(t)=r^{\delta} u(r) \quad$ and $\quad z(t)=r^{(1+\delta)(p-1)}\left|u^{\prime}(r)\right|^{p-2} u^{\prime}(r)$,

$$
\text { where } \delta=\frac{N-p}{p}
$$

Then using the equation (25) we obtain the following system in y and z

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=\frac{N-p}{p} y+|z|^{\frac{2-p}{p-1}} z \tag{27}\\
\frac{d z}{d t}=-\frac{N-p}{p} z-|y|^{p^{*}-2} y-\lambda|y|^{p-2} y
\end{array}\right.
$$

Notice that by a direct calculus we obtain easily that y satisfies the following nonlinear equation

$$
\begin{align*}
& (p-1)\left|\delta y-y^{\prime}\right|^{p-2}\left\{\delta y^{\prime}-y^{\prime \prime}\right\}+ \tag{28}\\
& \quad \delta\left|\delta y-y^{\prime}\right|^{p-2}\left\{\delta y-y^{\prime}\right\}-\lambda y^{p-1}-y^{p^{*-1}}=0 .
\end{align*}
$$

By the initial equation of u we conclude that $r^{N-1}\left|u^{\prime}(r)\right|^{p-2} u^{\prime}(r)$ is a strictly decreasing function, then it has a limit as $r \rightarrow 0$.

Since $\nabla u \in L^{p}\left(\mathbb{R}^{N}\right)$, such a limit must be 0 , hence $r^{N-1}\left|u^{\prime}(r)\right|^{p-2} u^{\prime}(r)<$ 0 and then $u^{\prime}(r)<0$, which yields $z<0$.

The stationary points of the system are $P_{1}=(0,0)$ and $P_{2}=\left(y_{0}, z_{0}\right)$ where

$$
y_{0}=\left\{\left(\frac{N-p}{p}\right)^{p}-\lambda\right\}^{\frac{N-p}{p^{2}}} \quad \text { and } \quad z_{0}=-\left(\frac{N-p}{p}\right)^{p-1} y_{0}^{p-1}
$$

The complete integral of the system is given by

$$
\begin{equation*}
V(y, z) \equiv \frac{1}{p^{*}}|y|^{p^{*}}+\frac{\lambda}{p}|y|^{p}+\frac{p-1}{p}|z|^{\frac{p}{p-1}}+\frac{N-p}{p} y z \tag{29}
\end{equation*}
$$

We set $V(t)=V(y(t), z(t))$. Since $\frac{\partial V(t)}{\partial t}=0$ for all $t \in \mathbb{R}$, we get that

$$
\begin{equation*}
V(t)=V(y(t), z(t))=K_{0} \tag{30}
\end{equation*}
$$

for some real constant K_{0}.

LEMMA 3.6. - y and z are bounded.
Proof. - By Young inequality, (29), and (30), we obtain that

$$
\frac{1}{p^{*}}|y|^{p^{*}}+\frac{\lambda}{p}|y|^{p}-\frac{|\delta y|^{p}}{p} \leqslant K_{0},
$$

from which we can conclude that y is bounded in \mathbb{R}. Again by Young inequality we have that for any $\varepsilon>0$ there exists C_{ε} such that

$$
|y(t) z(t)| \leqslant \varepsilon|z(t)|^{\frac{p}{p-1}}+C_{\varepsilon}|y(t)|^{p} .
$$

Hence from (30) and (29) we have

$$
K_{0} \geqslant \frac{p-1}{p}|z(t)|^{\frac{p}{p-1}}-\delta \varepsilon|z(t)|^{\frac{p}{p-1}}-\delta C_{\varepsilon}|y(t)|^{p} .
$$

Therefore, taking ε small enough, from the boundedness of $y(t)$ we deduce that z is also bounded.

The following lemma states that $K_{0}=0$.
Lemma 3.7. - For any $t \in \mathbb{R}^{N}$

$$
(y(t), z(t)) \in\left\{(y, z) \in \mathbb{R}^{2}: V(y, z)=0\right\} .
$$

Proof. - Let us define the following even function

$$
\begin{equation*}
\phi(s)=K_{0}+\frac{\delta^{p}-\lambda}{p}|s|^{p}-\frac{1}{p^{*}}|s|^{p^{*}} . \tag{31}
\end{equation*}
$$

It is easy to obtain that ϕ is strictly increasing in [$0, s_{0}$] and strictly decreasing in $\left[s_{0}, \infty\right)$ where $s_{0}=(\delta p-\lambda)^{\delta}$ and $\phi\left(s_{0}\right)=K_{0}+K_{1}$ where $K_{1}=\frac{1}{N}\left(\delta^{p}-\right.$ $\lambda)^{N / p}$. Since $\phi(y(t)) \geqslant 0$ we obtain that $K_{0} \geqslant-K_{1}$. We have four cases

1. $K_{0}=-K_{1}$;
2. $-K_{1}<K_{0}<0$;
3. $K_{0}>0$;
4. $K_{0}=0$.

In the first case the maximum of ϕ is zero but since $\phi(y(t)) \geqslant 0$ we obtain that $y(t)=s_{0}$ and $u(r)=\frac{s_{0}}{r^{\delta}} \notin \mathscr{\partial}^{1, p}\left(\mathbb{R}^{N}\right)$. In the second case, i.e. $-K_{1}<K_{0}<0$, let s_{1} be the first zero of ϕ, then s_{1} is strictly positive and $y(t) \geqslant s_{1}$ for all $t \in \mathbb{R}$, hence $u \notin \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right)$. In order to exclude the third case let us observe that if
$K_{0}>0$, then ϕ vanishes only at a positive value b. If \bar{t} is a critical point of y, i.e. $y^{\prime}(\bar{t})=0$, then from (27) and the negativity of z, we obtain that

$$
\begin{equation*}
\delta y(\bar{t})=|z(\bar{t})|^{\frac{1}{p-1}} . \tag{32}
\end{equation*}
$$

From (29), (30), and (32), it follows that $\phi(y(\bar{t}))=0$. Hence $y(\bar{t})=b$. Hence all the stationary points of y must stay on the same level $b>0$. From this fact and the integrability condition on u, it follows that y must be strictly increasing for $t \leqslant-R$ for some large $R>0$. In particular there exists $\lim _{t \rightarrow-\infty} y(t)$ and by integrability of u such limit must be 0 . Since $y(t) \rightarrow 0$ as $t \rightarrow-\infty$ and $z(t)$ is bounded, from (29) and (30), we deduce that there exists $\ell=\lim _{t \rightarrow-\infty} z(t)$ and

$$
K_{0}=\frac{p-1}{p}|\ell|^{\frac{p}{p-1}} .
$$

On the other hand from the second equation in (27), we infer that ℓ must be 0 , which is not possible if $K_{0}>0$. Hence the only possible case is case 4, i.e. $K_{0}=$ 0 . The conclusion follows from $K_{0}=0$ and (30).

Lemma 3.8. - There exists $t_{0} \in \mathbb{R}$ such that $y(t)$ is strictly increasing for $t<$ t_{0} and strictly decreasing for $t>t_{0}$. Moreover

$$
\begin{equation*}
\max _{t \in \mathbb{R}^{N}} y(t)=y\left(t_{0}\right)=\left[\frac{N}{N-p}\left(\delta^{p}-\lambda\right)\right]^{1 /\left(p^{*}-p\right)} . \tag{33}
\end{equation*}
$$

Proof. - In view of the integrability condition on u and since y is a strictly positive function, to conclude it is enough to show that y has only one critical point. Arguing as above, it is possible to show that if $y^{\prime}(\bar{t})=0$ then $\phi(y(\bar{t}))=0$, where the function ϕ is defined in (31). Since $K_{0}=0, \phi$ has only two zeros, which are $s=0$ and $s=b$, where

$$
b=\left[\frac{N}{N-p}\left(\delta^{p}-\lambda\right)\right]^{1 /\left(p^{*}-p\right)}
$$

Since y is strictly positive, we deduce that $y(\bar{t})=b$. Hence all the critical points of y must stay on the same level $b>0$. As a consequence, if y has two distinct critical points $t_{1}<t_{2}$, it must be $y(t)=b$ for any $t_{1} \leqslant t \leqslant t_{2}$, hence $y^{\prime}(t)=0$ for all $t \in\left[t_{1}, t_{2}\right]$. Therefore, using (27) we conclude that $z(t)=-(\delta b)^{p-1}$ for all $t \in$ [$\left.t_{1}, t_{2}\right]$ and then $z^{\prime}(t)=0$ for all $t \in\left(t_{1}, t_{2}\right)$. Now in view of Lemma 3.7 and from (27) we obtain that $z^{\prime}(t)=-\frac{p^{*}-p}{p^{*}} y^{p^{*-1}}(t)<0$ for all $t \in\left(t_{1}, t_{2}\right)$ a contradiction with the fact that $z^{\prime}(t)=0$ in $\left(t_{1}, t_{2}\right)$.

Hence we conclude that y has only a critical point t_{0}, which must be a global
maximum point in view of the integrability of u and the positivity of y. Moreover $\max _{\mathbb{R}^{N}} y=y\left(t_{0}\right)=b$.

Since the system (27) is autonomous, then modulo translation we can assume that $t_{0}=0$. Using (28) we get

$$
\begin{equation*}
\left|\delta y-y^{\prime}\right|^{p-2}\left\{\delta y-y^{\prime}\right\}=\mathrm{e}^{-\delta t} \int_{-\infty}^{t} \mathrm{e}^{\delta s}\left(\lambda y^{p-1}(s)+y^{p^{*}-1}(s)\right) d s \tag{34}
\end{equation*}
$$

Hence we conclude that $\delta y-y^{\prime}>0$. The following result gives the exact behavior of y as $t \rightarrow \pm \infty$.

Lemma 3.9. - Suppose that y is a positive solution of (28) such that y is increasing in $(-\infty, 0)$ and decreasing in $(0, \infty)$, then there exist positive constants c_{1}, c_{2}, such that

$$
\begin{align*}
& \lim _{t \rightarrow-\infty} \mathrm{e}^{\left(l_{1}-\delta\right) t} y(t)=y(0) c_{1}>0 \tag{35}\\
& \lim _{t \rightarrow \infty} \mathrm{e}^{\left(l_{2}-\delta\right) t} y(t)=y(0) c_{2}>0 \tag{36}
\end{align*}
$$

where l_{1}, l_{2} are the zeros of the function $\xi(s)=(p-1) s^{p}-(N-p) s^{p-1}+\lambda$ such that $0<l_{1}<l_{2}$.

Proof. - It is easy to see that $l_{1}<\delta<l_{2}$. Let us now prove (35). Using (27) we obtain that

$$
\frac{d}{d t}\left(\mathrm{e}^{-\left(\delta-l_{1}\right) t} y(t)\right)=\mathrm{e}^{-\left(\delta-l_{1}\right) t} y(t)\left(l_{1}-\frac{|z(t)|^{\frac{1}{p-1}}}{y(t)}\right)
$$

Therefore we get

$$
\begin{equation*}
\mathrm{e}^{-\left(\delta-l_{1}\right) t} y(t)=y(0) \mathrm{e}^{-\int_{t}^{(}\left(l_{1}-y(s)^{-1}|z(s)|^{1 /(p-1)}\right) d s} \tag{37}
\end{equation*}
$$

We set $H(s)=\frac{\left\lvert\, z(s)^{\frac{1}{p-1}}\right.}{y(s)}$. We claim that
(38) $\quad H$ is an increasing function from $(-\infty, 0]$ to $\left(l_{1}, \delta\right]$.

To prove the claim, we first show that $H^{\prime}(s)>0$ for all $s<0$. Indeed, assume by contradiction that there exists $s_{0}<0$ such that $H^{\prime}\left(s_{0}\right) \leqslant 0$. Since

$$
H^{\prime}(s)=\frac{-\frac{1}{p-1} y(s) z^{\prime}(s)|z(s)|^{\frac{2-p}{p-1}}-|z(s)|^{\frac{1}{p-1}} y^{\prime}(s)}{y^{2}(s)}
$$

from $H^{\prime}\left(s_{0}\right) \leqslant 0$, (27), and (29), it follows that $\left(\frac{1}{p}-\frac{1}{p^{*}}\right) y^{p^{*}}\left(s_{0}\right) \leqslant 0$ which
yields a contradiction with the positivity of y. Therefore $H^{\prime}>0$ and then H is a strictly increasing function. Using (27) and the fact that $y^{\prime}(0)=0$, we find that $H(0)=(N-p) / p$. From (29) we conclude that $\lim _{s \rightarrow-\infty} H(s)=l_{1}$. The claim is thereby proved.

From (37) and (38) we conclude that $\mathrm{e}^{-\left(\delta-l_{1}\right) t} y(t)$ is a decreasing function, therefore there exists $\lim _{t \rightarrow-\infty} \mathrm{e}^{-\left(\delta-l_{1}\right) t} y(t)$ and

$$
\alpha \equiv \lim _{t \rightarrow-\infty} \mathrm{e}^{-\left(\delta-l_{1}\right) t} y(t)=y(0) \mathrm{e}^{-\int_{-\infty}^{0}\left(H(s)-l_{1}\right) d s}>0
$$

Hence to prove (35) it is enough to show that $\alpha<+\infty$. To this aim let us note that from a direct computation

$$
H^{\prime}(s)=-\frac{p}{(p-1)(N-p)} H(s)^{2-p} \xi(H(s))
$$

where ξ is given by $\xi(s)=(p-1) s^{p}-(N-p) s^{p-1}+\lambda$. Thus performing the change of variable $\sigma=H(s)$, we have $d \sigma=H^{\prime}(s) d s \equiv \varrho(\sigma) d s$ where $\varrho(\sigma)=-$ $\frac{p}{(p-1)(N-p)} \sigma^{2-p} \xi(\sigma)$. We can write $\varrho(\sigma)=\left(\sigma-l_{1}\right)\left(\sigma-l_{2}\right) g(\sigma)$ where g is a negative function such that $|g(\sigma)| \geqslant$ const >0 for $\sigma \in\left[l_{1},(N-p) / p\right]$. Therefore we obtain

$$
\alpha=\lim _{t \rightarrow-\infty} \mathrm{e}^{-\left(\delta-l_{1}\right) t} y(t)=y(0) \mathrm{e}^{-\int_{-\infty}^{0}\left(H(s)-l_{1}\right) d s}=y(0) \mathrm{e}^{-\int_{1_{1}}\left[\left(\sigma-l_{2}\right) g(\sigma)\right]^{-1} d \sigma} .
$$

Since $l_{2}>\delta$ and $|g(\sigma)| \geqslant c_{1}$ if $\sigma \in\left[l_{1},(N-p) / p\right]$, we conclude that $\int_{l_{1}}^{\delta} \frac{1}{\left(\sigma-l_{2}\right) g(\sigma)} d \sigma<+\infty$, hence $\alpha<+\infty$. The proof of (36) can be done observing that $\lim _{t^{+\infty}} H(t)=l_{2}$ and using the same argument.

In the following corollary we translate the results above to energy solutions u of equation (25), namely to radial solutions of (19) in the energy space $\mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right)$.

Corollary 3.10. - Let u be a positive energy solution to (25), then there exist positive constants C_{1} and C_{2} such that

$$
\begin{align*}
& \lim _{r \rightarrow 0} r^{l_{1}} u(r)=C_{1}>0, \tag{39}\\
& \lim _{r \rightarrow \infty} r^{l_{2}} u(r)=C_{2}>0 \tag{40}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow 0} r^{l_{1}+1}\left|u^{\prime}(r)\right|=C_{1} l_{1}>0 \quad \text { and } \quad \lim _{r \rightarrow+\infty} r^{l_{2}+1}\left|u^{\prime}(r)\right|=C_{2} l_{2}>0 \tag{41}
\end{equation*}
$$

Proof. - (39) and (40) follow from (35), (36), and (26), while (41) follows from (26) and the fact that $\lim _{t \rightarrow-\infty} H(t)=l_{1}$ and $\lim _{t \rightarrow+\infty} H(t)=l_{2}$.

Notice that since $\lim _{s \rightarrow-\infty} H(s)=l_{1}$ and $\lim _{t \rightarrow-\infty} \mathrm{e}^{\left(l_{1}-\delta\right) t} y(t)=y(0) c_{1}$, we obtain that

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} \mathrm{e}^{\left(l_{1}-\delta\right) t}|z(t)|^{\frac{1}{p-1}}=c_{1} y(0) l_{1}>0, \tag{42}
\end{equation*}
$$

and since $\lim _{s \rightarrow+\infty} H(s)=l_{2}$

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \mathrm{e}^{\left(l_{2}-\delta\right) t}|z(t)|^{\frac{1}{p-1}}=c_{2} y(0) l_{2}>0 . \tag{43}
\end{equation*}
$$

The uniqueness in the case of bounded solutions to quasilinear equations could be seen in [10]. We state and prove now the uniqueness result for energy positive solutions to problem (25), that requires a different approach based on the previous analysis.

Theorem 3.11. - Let $u_{1}(r)$ and $u_{2}(r)$ be two positive energy solutions to equation (19). Let us denote by $\left(y_{1}(t), z_{1}(t)\right)$ and $\left(y_{2}(t), z_{2}(t)\right)$ the solutions to system (27) corresponding to u_{1} and u_{2} respectively. Assume that

$$
\max _{t \in(-\infty, \infty)} y_{1}(t)=y_{1}(0)=\left(\frac{N}{N-p}\right)^{\frac{1}{p^{*}-p}}\left(\delta^{p}-\lambda\right)^{\frac{1}{p^{*}-p}} .
$$

If $y_{2}(0)=y_{1}(0)$, then $\left(y_{1}(t), z_{1}(t)\right)=\left(y_{2}(t), z_{2}(t)\right)$ and hence $u_{1}=u_{2}$.
Before proving the above uniqueness result, we state the main consequence of Theorem 3.11.

Theorem 3.12. - Let $u_{1}(r)$ be the fixed energy solution to (19) such that, if $\left(y_{1}(t), z_{1}(t)\right)$ is the solution to system (27) corresponding to u_{1}, then

$$
\max _{t \in(-\infty, \infty)} y_{1}(t)=y(0)=\left(\frac{N}{N-p}\right)^{\frac{1}{p^{*}-p}}\left(\delta^{p}-\lambda\right)^{\frac{1}{p^{*}-p}} .
$$

Then for any other solution v there exists $\mu_{0}>0$ such that $v(r)=$ $\mu_{0}^{-(N-p) / p} u_{1}\left(r / \mu_{0}\right)$.

Proof. - Let $\left(y_{2}(t), z_{2}(t)\right)$ be the solution to system (27) corresponding to v. From Lemma 3.8, there exists $t_{0} \in(-\infty, \infty)$ such that

$$
\max _{t \in(-\infty, \infty)} y_{2}(t)=y\left(t_{0}\right)=\left(\frac{N}{N-p}\right)^{\frac{1}{p^{*}-p}}\left(\delta^{p}-\lambda\right)^{\frac{1}{p^{*}-p}} .
$$

We set $\bar{y}_{2}(t)=y\left(t-t_{0}\right)$ and $\bar{z}_{2}(t)=z_{2}\left(t-t_{0}\right)$. Notice that

$$
\max _{t \in(-\infty, \infty)} \bar{y}_{2}(t)=\bar{y}_{2}(0)=\left(\frac{N}{N-p}\right)^{\frac{1}{p^{*}-p}}\left(\delta^{p}-\lambda\right)^{\frac{1}{p^{*}-p}} .
$$

Using the fact that the system (27) is autonomous we obtain that $\left(\bar{y}_{2}, \bar{z}_{2}\right)$ is also a solution to (27). Since $\bar{y}_{2}(0)=y_{1}(0)$, from Theorem 3.11 we obtain that $\left(\bar{y}_{2}(t), \bar{z}_{2}(t)\right)=\left(y_{1}(t), z_{1}(t)\right)$. Hence from (26) we conclude that

$$
u_{1}(r)=\frac{1}{\mathrm{e}^{\delta t_{0}}} v\left(\frac{r}{\mathrm{e}^{t_{0}}}\right) .
$$

Therefore we conclude that $v(r)=\mu_{0}^{-\delta} u_{1}\left(r / \mu_{0}\right)$ where $\mu=\mathrm{e}^{-t_{0}}$.
Proof of Theorem 3.11. - Let u_{1}, u_{2} be two solutions to problem (19) and let $\left(y_{1}(t), z_{1}(t)\right),\left(y_{2}(t), z_{2}(t)\right)$ be the solutions to system (27) corresponding to u_{1} and u_{2} respectively such that

$$
\max _{t \in(-\infty, \infty)} y_{1}(t)=y_{1}(0)=\left(\frac{N}{N-p}\right)^{\frac{1}{p^{*}-p}}\left(\delta^{p}-\lambda\right)^{\frac{1}{p^{*}-p}}
$$

Assume that $y_{2}(0)=y_{1}(0)$. From Lemma 3.8 we know that y_{2} has a unique maximum point t_{0} at which $y_{2}\left(t_{0}\right)=\left(N\left(\delta^{p}-\lambda\right) /(N-p)\right)^{1 /\left(p^{*}-p\right)}$. Since $y_{2}(0)=$ $y_{1}(0)=\left(N\left(\delta^{p}-\lambda\right) /(N-p)\right)^{1 /\left(p^{*}-p\right)}$ we conclude that $t_{0}=0$. Hence $y_{2}^{\prime}(0)=0$. From (27) we get

$$
\mathrm{e}^{-\delta t} y(t)=y(0)-\int_{0}^{t} \mathrm{e}^{-\delta \sigma}|z(\sigma)|^{\frac{1}{p-1}} d \sigma
$$

Hence we obtain that

$$
\left.\left|y_{1}(t)-y_{2}(t)\right| \leqslant\left.\mathrm{e}^{\delta t} \int_{0}^{t} \mathrm{e}^{-\delta \sigma}| | z_{1}(\sigma)\right|^{\frac{1}{p-1}}-\left|z_{2}(\sigma)\right|^{\frac{1}{p-1}} \right\rvert\, d \sigma
$$

Since from (27) we have that $z_{1}(0)=z_{2}(0)=-\left(\delta y_{1}(0)\right)^{p-1}$, we get the existence of $\sigma_{1}>0$ such that for all $\sigma \in\left[0, \sigma_{1}\right]$ we have

$$
\left|\left|z_{1}(\sigma)\right|^{\frac{1}{p-1}}-\left|z_{2}(\sigma)\right|^{\frac{1}{p-1}}\right| \leqslant C\left(\sigma_{1}\right)\left|z_{1}(\sigma)-z_{2}(\sigma)\right|
$$

Therefore we conclude that

$$
\left|y_{1}(t)-y_{2}(t)\right| \leqslant \mathrm{e}^{\delta t} C\left(\sigma_{1}\right) \int_{0}^{t} \mathrm{e}^{-\delta \sigma}\left|z_{1}(\sigma)-z_{2}(\sigma)\right| d \sigma
$$

Now from (27) we obtain that

$$
\mathrm{e}^{\delta \sigma} z_{i}(\sigma)=z_{1}(0)-\int_{0}^{\sigma} \mathrm{e}^{\delta s}\left[\lambda y_{i}^{p-1}(s)+y_{i}^{p^{*}-1}(s)\right] d s
$$

Hence

$$
\begin{aligned}
&\left|z_{1}(\sigma)-z_{2}(\sigma)\right| \leqslant \lambda \mathrm{e}^{-\delta \sigma} \int_{0}^{\sigma} \mathrm{e}^{\delta s}\left|y_{1}^{p-1}(s)-y_{2}^{p-1}(s)\right| d s+ \\
& \mathrm{e}^{-\delta \sigma} \int_{0}^{\sigma} \mathrm{e}^{\delta s}\left|y_{1}^{p^{*}-1}(s)-y_{2}^{p^{*}-1}(s)\right| d s
\end{aligned}
$$

As above, we can prove the existence of $s_{1}>0$ such that for $s \in\left[0, s_{1}\right]$ we have

$$
\left|y_{1}^{p-1}(s)-y_{2}^{p-1}(s)\right| \leqslant C_{1}\left(s_{1}\right)\left|y_{1}(s)-y_{2}(s)\right|
$$

and

$$
\left|y_{1}^{p^{*}-1}(s)-y_{2}^{p^{*-1}}(s)\right| \leqslant C_{2}\left(s_{1}\right)\left|y_{1}(s)-y_{2}(s)\right|
$$

Hence

$$
\left|z_{1}(\sigma)-z_{2}(\sigma)\right| \leqslant \widetilde{C}\left(s_{1}\right)(\lambda+1) \mathrm{e}^{-\delta \sigma} \int_{0}^{\sigma} \mathrm{e}^{\delta s}\left|y_{1}(s)-y_{2}(s)\right| d s
$$

Therefore, if $0 \leqslant t \leqslant \min \left\{\sigma_{1}, s_{1}\right\}$ we obtain that

$$
\left|y_{1}(t)-y_{2}(t)\right| \leqslant \mathrm{e}^{\delta t} C \int_{0}^{t} \mathrm{e}^{-2 \delta \sigma}\left\{\int_{0}^{\sigma} \mathrm{e}^{\delta s}\left|y_{1}(s)-y_{2}(s)\right| d s\right\} d \sigma
$$

where $C=C\left(\sigma_{1}\right) \widetilde{C}\left(s_{1}\right)(\lambda+1)$, and hence

$$
\left|y_{1}(t)-y_{2}(t)\right| \leqslant C \mathrm{e}^{\delta t} \int_{0}^{t} \mathrm{e}^{\delta \sigma}\left|y_{1}(\sigma)-y_{2}(\sigma)\right|\left\{\int_{\sigma}^{t} \mathrm{e}^{-2 \delta s} d s\right\} d \sigma
$$

Consequently we obtain

$$
\mathrm{e}^{-\delta t}\left|y_{1}(t)-y_{2}(t)\right| \leqslant C_{2} \int_{0}^{t} \mathrm{e}^{-\delta \sigma}\left|y_{1}(\sigma)-y_{2}(\sigma)\right| d \sigma
$$

Therefore, using Gronwall Lemma we conclude that $y_{1}(t)=y_{2}(t)$ for $t \in$ [$0, \min \left\{\sigma_{1}, s_{1}\right\}$] and then $u_{1}(r)=u_{2}(r)$ in [1, r_{0}] where $r_{0}>1$. To prove the identity for all $r \geqslant 0$ it is enough to iterate the above argument.

We can resume in the next statement the main results obtained in this section.

Theorem 3.13. - All positive radial solutions of (19) are

$$
u(\cdot)=\sigma^{-\frac{N-p}{p}} u_{0}\left(\frac{\cdot}{\sigma}\right)
$$

where $u_{0_{1}}$ is the unique solution of (19) such that $u_{0}(1)=y(0)=$ $\left(\frac{N}{N-p}\right)^{\frac{1}{p^{*}-p}}\left(\delta^{p}-\lambda\right)^{\frac{1}{p^{*}-p}}$. Moreover there exist constants $C_{1}, C_{2}>0$ such that

$$
0<C_{1} \leqslant \frac{u_{0}(x)}{\left(|x|^{l_{1} / \delta}+|x|^{l_{2} / \delta}\right)^{-\delta}} \leqslant C_{2} .
$$

4. - Existence result for perturbed problems.

4.1. Perturbation in the linear term.

In this section we will prove some existence and nonexistence results in the case $q=p-1$, extending to the p-laplacian operator the analogous results obtained in [1] for $p=2$. Let us start by considering the case of a perturbed coefficient of the Hardy-type potential, i.e. we deal with the following problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\frac{\lambda+h(x)}{|x|^{p}} u^{p-1}+u^{p^{*}-1}, \quad x \in \mathbb{R}^{N}, \tag{44}\\
u>0 \text { in } \mathbb{R}^{N}, \text { and } u \in \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

where $N \geqslant 3$ and $p^{*}=\frac{p N}{N-p}$. Hypotheses on h will be given below.

4.2. Nonexistence results.

The following nonexistence results show how in this kind of problems both the size and the shape of the perturbation are important. We set

$$
\left\{\begin{array}{l}
Q(u)=\int_{\mathbb{R}^{N}}|\nabla u|^{p} d x-\int_{\mathbb{R}^{N}} \frac{\lambda+h(x)}{|x|^{p}}|u|^{p} d x \tag{45}\\
\mathcal{K}=\left\{\left.u \in \mathcal{O}^{1, p}\left(\mathbb{R}^{N}\right)\left|\int_{\mathbb{R}^{N}}\right| u\right|^{p^{*}} d x=1\right\}
\end{array}\right.
$$

and consider $I_{1}=\inf _{u \in \mathcal{K}} Q(u)$.
Lemma 4.1. - Problem (44) has no positive solution in each one of the following cases:
(1) if $\lambda+h(x) \geqslant 0$ in some ball $B_{\delta}(0)$ and $I_{1}<0$;
(2) if h is a differentiable function such that $\left\langle h^{\prime}(x), x\right\rangle$ has a fixed sign.

Proof. - Let us first prove nonexistence under hypothesis (1). Suppose that $I_{1}<0$ and let u be a positive solution to (44). By classical regularity results for elliptic equations we obtain that $u \in \mathcal{C}^{1, \alpha}\left(\mathbb{R}^{N} \backslash\{0\}\right)$. On the other hand, since $\lambda+h(x) \geqslant 0$ in $B_{\delta}(0)$, we obtain that $-\Delta_{p} u \geqslant 0$ in the distributional sense in the ball $B_{\delta}(0)$. Therefore, as $u \geqslant 0$ and $u \neq 0$, by the strong maximum principle we obtain that $u(x) \geqslant c>0$ in some ball $B_{\tilde{\delta}}(0) \subset \subset B_{\delta}(0)$.

Let $\phi_{n} \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right), \phi_{n} \geqslant 0,\left\|\phi_{n}\right\|_{p^{*}}=1$, be a minimizing sequence of I_{1}. Using Theorem 2.1 we obtain that

$$
\int_{\mathbb{R}^{N}}\left|\nabla \phi_{n}\right|^{p} d x \geqslant \int_{\mathbb{R}^{N}} \frac{-\Delta_{p} u}{u^{p-1}}\left|\phi_{n}\right|^{p} d x
$$

Hence

$$
\int_{\mathbb{R}^{N}}\left|\nabla \phi_{n}\right|^{p} d x \geqslant \int_{\mathbb{R}^{N}} \frac{\lambda+h(x)}{|x|^{p}} \phi_{n}^{p}+\int_{\mathbb{R}^{N}} \phi_{n}^{p} u^{p^{*}-p} .
$$

On the other hand, $I_{1}<0$ implies that there exists an integer n_{0} such that if $n \geqslant n_{0}$

$$
\int_{\mathbb{R}^{N}}\left|\nabla \phi_{n}\right|^{p}-\int_{\mathbb{R}^{N}} \frac{\lambda+h(x)}{|x|^{p}} \phi_{n}^{p}<0 .
$$

As a consequence $\int_{\mathbb{R}^{N}} \phi_{n}^{p} u^{p^{*}-p}<0$ for $n \geqslant n_{0}$, which is a contradiction with the hypothesis $u>0$.

Let us now prove (2). Testing the equation with the Pohozaev multiplier, we obtain that any positive solution u to (44) satisfies the following identity

$$
\int_{\mathbb{R}^{N}} \frac{\left\langle h^{\prime}(x), x\right\rangle}{|x|^{p}}|u|^{p} d x=0
$$

which is not possible if $\left\langle h^{\prime}(x), x\right\rangle$ has a fixed sign and $u \neq 0$.
Corollary 4.2. - Assume either
i) $\lambda>\Lambda_{N, p}$ and $h \geqslant 0$, or
ii) $\lambda>\Lambda_{N, p}$ and $1 \leqslant \frac{\lambda}{\Lambda_{N, p}\|h\|_{\infty}}$,
then problem (44) has no positive solution.
4.3. The local Palais-Smale condition: existence results.

Existence results will be obtained through a variational approach. More precisely we look for critical points of the associated functional

$$
\begin{equation*}
J(u)=\frac{1}{p} \int_{\mathbb{R}^{N}}|\nabla u|^{p} d x-\frac{1}{p} \int_{\mathbb{R}^{N}} \frac{\lambda+h(x)}{|x|^{p}}|u|^{p} d x-\frac{1}{p^{*}} \int_{\mathbb{R}^{N}}|u|^{p^{*}} d x \tag{46}
\end{equation*}
$$

We suppose that h verifies the following hypotheses
$(h 0) \lambda+h(0)>0$,
(h1) $h \in C\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right)$,
(h2) for some $c_{0}>0, \lambda+\|h\|_{\infty} \leqslant \Lambda_{N, p}-c_{0}$.
Solutions to equation (44) can be found as critical points of J in $\varpi^{1, p}\left(\mathbb{R}^{N}\right)$. The following theorem yields a local Palais-Smale condition for J.

Theorem 4.3. - Suppose that h satisfies (h0), (h1), and (h2) and denote $h(\infty) \equiv \lim \sup h(x)$. Let $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right)$ be a Palais-Smale sequence for J, namely $\mid x \infty$

$$
J\left(u_{n}\right) \rightarrow c<\infty \text { and } J^{\prime}\left(u_{n}\right) \rightarrow 0 .
$$

If

$$
c<c^{*}=\frac{1}{N} \min \left\{S_{(\lambda+h(0))}^{N / p}, S_{(\lambda+h(\infty))}^{N / p}\right\}
$$

where $S_{(\lambda+h(0))}^{N / p}$ and $S_{(\lambda+h(\infty))}^{N / p}$ are defined in (21), then $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ has a convergent subsequence.

Proof. - Let $\left\{u_{n}\right\}_{n}$ be a Palais-Smale sequence for J, then according to ($h 1$) - ($h 2$), $\left\{u_{n}\right\}_{n}$ is bounded in $\mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right)$. Therefore, up to a subsequence, $u_{n} \rightharpoonup u_{0}$ in $\partial^{1, p}\left(\mathbb{R}^{N}\right), u_{n} \rightarrow u_{0}$ a.e., and $u_{n} \rightarrow u_{0}$ in $L_{l o c}^{\alpha}\left(\mathbb{R}^{N}\right), \alpha \in\left[1, p^{*}\right)$. Hence, by the Concentration Compactness Principle by P. L. Lions (see [15] and [16]), there exists a subsequence still denoted by $\left\{u_{n}\right\}_{n}$ and an at most countable set I such that

1. $\left|\nabla u_{n}\right|^{p} \rightharpoonup d \mu \geqslant\left|\nabla u_{0}\right|^{p}+\sum_{j \in \mathcal{Y}} \mu_{j} \delta_{x_{j}}+\mu_{0} \delta_{0}$,
$2\left|u_{n}\right|^{p^{*}} \rightharpoonup d \nu=\left|u_{0}\right|^{p^{*}}+\sum_{j \in \mathcal{y}} v_{j} \delta_{x_{j}}+v_{0} \delta_{0}$,
2. $S v^{\frac{p}{p^{*}}} \leqslant \mu_{j}$ for all $j \in \mathcal{J} \cup\{0\}$,
3. $\frac{u_{n}^{p}}{|x|^{p}} \rightharpoonup d \gamma=\frac{u_{0}^{p}}{|x|^{p}}+\gamma_{0} \delta_{0}$,
4. $\Lambda_{N} \gamma_{0} \leqslant \mu_{0}$.

To study the concentration at infinity of the sequence, we also need to introduce the following quantities

$$
v_{\infty}=\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{|x|>R}\left|u_{n}\right|^{p^{*}} d x, \quad \mu_{\infty}=\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{|x|>R}\left|\nabla u_{n}\right|^{p} d x
$$

and

$$
\gamma_{\infty}=\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{|x|>R} \frac{\left|u_{n}\right|^{p}}{|x|^{p}} d x
$$

We claim that \mathcal{J} is finite and that for any $j \in \mathcal{J}$ either $v_{j}=0$ or $v_{j} \geqslant S^{N / 2}$. We follow closely the arguments in [6] (see also [1]). Let $\varepsilon>0$ and let ϕ be a smooth cut-off function centered at x_{j} such that $0 \leqslant \phi(x) \leqslant 1$,

$$
\phi(x)= \begin{cases}1, & \text { if }\left|x-x_{j}\right| \leqslant \varepsilon / 2 \\ 0, & \text { if }\left|x-x_{j}\right| \geqslant \varepsilon\end{cases}
$$

and $|\nabla \phi| \leqslant 4 / \varepsilon$. Testing $J^{\prime}\left(u_{n}\right)$ with $u_{n} \phi$ we have

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty}\left\langle J^{\prime}\left(u_{n}\right), u_{n} \phi\right\rangle \\
& =\lim _{n \rightarrow \infty}\left(\int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{p} \phi+\int_{\mathbb{R}^{N}} u_{n}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \phi-\int_{\mathbb{R}^{N}} \frac{\lambda+h(x)}{|x|^{p}}\left|u_{n}\right|^{p} \phi-\int_{\mathbb{R}^{N}} \phi\left|u_{n}\right|^{p^{*}}\right) .
\end{aligned}
$$

From 1), 2) and 4) and since $0 \notin \operatorname{supp}(\phi)$ we find that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{p} \phi=\int_{\mathbb{R}^{N}} \phi d \mu, \quad \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p^{*}} \phi=\int_{\mathbb{R}^{N}} \phi d v,
$$

and

$$
\lim _{n \rightarrow \infty} \int_{B_{\varepsilon}\left(x_{j}\right)} \frac{\lambda+h(x)}{|x|^{p}}\left|u_{n}\right|^{p} \phi=\int_{B_{\varepsilon}\left(x_{j}\right)} \frac{\lambda+h(x)}{|x|^{p}}\left|u_{0}\right|^{p} \phi .
$$

Taking limits as $\varepsilon \rightarrow 0$ we obtain

$$
\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|u_{n}\right|\left|\nabla u_{n}\right|^{p-1}|\nabla \phi| \rightarrow 0 .
$$

Hence

$$
0=\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty}\left\langle J^{\prime}\left(u_{n}\right), u_{n} \phi\right\rangle \geqslant \mu_{j}-v_{j} .
$$

By 3) we have that $S v^{\frac{p}{p^{*}}} \leqslant \mu_{j}$, then we obtain that either $v_{j}=0$ or $v_{j} \geqslant S^{N / p}$, which implies that J is finite. The claim is proved.

Let us now study the possibility of concentration at $x=0$ and at ∞. Let ψ be a regular function such that $0 \leqslant \psi(x) \leqslant 1$,

$$
\psi(x)= \begin{cases}1, & \text { if }|x|>R+1 \\ 0, & \text { if }|x|<R\end{cases}
$$

and $|\nabla \psi| \leqslant 4 / R$. From (21) we obtain that

$$
\begin{equation*}
\frac{\int_{\mathbb{R}^{N}}\left|\nabla\left(u_{n} \psi\right)\right|^{p} d x-(\lambda+h(\infty)) \int_{\mathbb{R}^{N}} \frac{\left|\psi u_{n}\right|^{p}}{|x|^{p}} d x}{\left(\int_{\mathbb{R}^{N}}\left|\psi u_{n}\right|^{p^{*}}\right)^{p / p^{*}}} \geqslant S_{(\lambda+h(\infty)))} \tag{47}
\end{equation*}
$$

Hence

$$
\int_{\mathbb{R}^{N}}\left|\nabla\left(u_{n} \psi\right)\right|^{p} d x-(\lambda+h(\infty)) \int_{\mathbb{R}^{N}} \frac{\left|\psi u_{n}\right|^{p}}{|x|^{p}} d x \geqslant S_{(\lambda+h(\infty))}\left(\int_{\mathbb{R}^{N}}\left|\psi u_{n}\right|^{p^{*}}\right)^{p / p^{*}}
$$

Therefore we conclude that

$$
\begin{align*}
& \int_{\mathbb{R}^{N}}\left|\psi \nabla u_{n}+u_{n} \nabla \psi\right|^{p} d x \geqslant \tag{48}\\
& \quad(\lambda+h(\infty)) \int_{\mathbb{R}^{N}} \frac{\left|\psi u_{n}\right|^{p}}{|x|^{p}} d x+S_{(\lambda+h(\infty))}\left(\int_{\mathbb{R}^{N}}\left|\psi u_{n}\right|^{p^{*}}\right)^{p / p^{*}}
\end{align*}
$$

We claim that

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty}\left\{\int_{\mathbb{R}^{N}}\left|\psi \nabla u_{n}+u_{n} \nabla \psi\right|^{p} d x-\int_{\mathbb{R}^{N}} \psi^{p}\left|\nabla u_{n}\right|^{p} d x\right\}=0 \tag{49}
\end{equation*}
$$

Indeed from the following elementary inequality

$$
\left||X+Y|^{p}-|X|^{p}\right| \leqslant C\left(|X|^{p-1}|Y|+|Y|^{p}\right) \text { for all } X, Y \in \mathbb{R}^{N},
$$

it follows that

$$
\int_{\mathbb{R}^{N}}| | \psi \nabla u_{n}+\left.u_{n} \nabla \psi\right|^{p}-\psi^{p}\left|\nabla u_{n}\right|^{p} \mid d x \leqslant C \int_{\mathbb{R}^{N}}\left(\left|\psi \nabla u_{n}\right|^{p-1}\left|u_{n} \nabla \psi\right|+\left|u_{n} \nabla \psi\right|^{p}\right) d x .
$$

From Hölder inequality we obtain

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left|u_{n}\right|\left|\psi \nabla u_{n}\right|^{p-1}|\nabla \psi| d x \leqslant \\
&\left(\int_{R<|x|<R+1}\left|u_{n}\right|^{p}|\nabla \psi|^{p} d x\right)^{\frac{1}{p}}\left(\int_{R<|x|<R+1}\left|\nabla u_{n}\right|^{p} d x\right)^{\frac{p-1}{p}} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \int_{R^{N}}\left|u_{n}\right| \psi^{p-1}\left|\nabla u_{n}\right|^{p-1}|\nabla \psi| d x \\
& \leqslant C\left(\int_{R<|x|<R+1}\left|u_{0}\right|^{p}|\nabla \psi|^{p} d x\right)^{\frac{1}{p}} \\
& \leqslant C\left(\int_{R<|x|<R+1}\left|u_{0}\right|^{p^{*}} d x\right)^{\frac{p}{p^{*}}}\left(\int_{R<|x|<R+1}|\nabla \psi|^{N} d x\right)^{\frac{p}{N}} \\
& \leqslant \bar{C}\left(\int_{R<|x|<R+1}\left|u_{0}\right|^{p^{*}} d x\right)^{p / p^{*}}
\end{aligned}
$$

Therefore we conclude that
$\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|u_{n}\right| \psi^{p-1}\left|\nabla u_{n}\right|^{p-1}|\nabla \psi| d x \leqslant$

$$
\bar{C} \lim _{R \rightarrow \infty}\left(\int_{R<|x|<R+1}\left|u_{0}\right|^{p^{*}} d x\right)^{p / p^{*}}=0
$$

Using the same argument we can prove that

$$
\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p}|\nabla \psi|^{p} d x=0
$$

The claim is thereby proved. From (48) and (49), we deduce that

$$
\begin{equation*}
\mu_{\infty}-(\lambda+h(\infty)) \gamma_{\infty} \geqslant S_{(\lambda+h(\infty))} \boldsymbol{v}_{\infty}^{p / p^{*}} \tag{50}
\end{equation*}
$$

Since $\lim _{R \rightarrow \infty} \lim _{n \rightarrow \infty}\left\langle J^{\prime}\left(u_{n}\right), u_{n} \psi\right\rangle=0$, we obtain that $\mu_{\infty}-(\lambda+h(\infty)) \gamma_{\infty} \leqslant v_{\infty}$. Therefore we conclude that either $v_{\infty}=0$ or $v_{\infty} \geqslant S_{(\lambda+h(\infty))}^{\frac{N}{p}}$. The same holds for the concentration at $x_{0}=0$, namely that either

$$
v_{0}=0 \quad \text { or } \quad v_{0} \geqslant S_{(h+h(0))}^{\frac{N}{\bar{p}}}
$$

As a conclusion we obtain

$$
\begin{aligned}
c & =J\left(u_{n}\right)-\frac{1}{p}\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle+o(1) \\
& =\frac{1}{N} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p^{*}} d x+o(1)=\frac{1}{N}\left\{\int_{\mathbb{R}^{N}}\left|u_{0}\right|^{p^{*}} d x+v_{0}+v_{\infty}+\sum_{j \in \mathcal{Y}} v_{j}\right\} .
\end{aligned}
$$

If we assume the existence of $j \in \mathcal{J} \cup\{0, \infty\}$ such that $v_{j} \neq 0$, then we obtain that $c \geqslant c^{*}$, a contradiction with the hypothesis. Hence, up to a subsequence, $u_{n} \rightarrow u_{0}$ in $\mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right)$.

To find solutions through the Mountain Pass Theorem, we need to find some path in $\mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right)$ along which the maximum of $J(\gamma(t))$ is strictly below c^{*}. To this aim, we set $H=\max \{h(0), h(\infty)\}$ and consider $\left\{w_{\mu}\right\}$ the one parameter family of minimizers to problem (21) where λ is replaced by $\lambda+H$. The following theorem provides a sufficient condition for the minimax level to stay below the critical threshold c^{*}.

Theorem 4.4. - Suppose that (h1) and (h2) hold. Assume the existence of $\mu_{0}>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} h(x) \frac{w_{\mu_{0}}^{p}(x)}{|x|^{p}} d x>H \int_{\mathbb{R}^{N}} \frac{w_{\mu_{0}}^{p}(x)}{|x|^{p}} d x, \tag{51}
\end{equation*}
$$

then (44) has at least a positive solution.
Proof. - Let μ_{0} be as in the hypothesis, then if we set
$f(t)=J\left(t w_{\mu_{0}}\right)=$

$$
\frac{t^{p}}{p}\left(\int_{\mathbb{R}^{N}}\left|\nabla w_{\mu_{0}}\right|^{p} d x-\int_{\mathbb{R}^{N}} \frac{\lambda+h(x)}{|x|^{p}} w_{\mu_{0}}^{p} d x\right)-\frac{t^{p^{*}}}{p^{*}} \int_{\mathbb{R}^{N}}\left|w_{\mu_{0}}\right|^{p^{*}} d x, \quad t \geqslant 0
$$

we can see easily that f achieves its maximum at some $t_{0}>0$ and that there exists some $\varrho>0$ such that $J\left(t w_{\mu_{0}}\right)<0$ if $\left\|t w_{\mu_{0}}\right\| \geqslant \varrho$. A simple calculation yields

$$
t_{0}=\left[\frac{\int_{\mathbb{R}^{N}}\left|\nabla w_{\mu_{0}}\right|^{p} d x-\int_{\mathbb{R}^{N}} \frac{\lambda+h(x)}{|x|^{p}} w_{\mu_{0}}^{p} d x}{\int_{\mathbb{R}^{N}}\left|w_{\mu_{0}}\right|^{p^{*}} d x}\right]^{(N-p) / p^{2}}
$$

and

$$
J\left(t_{0} w_{\mu_{0}}\right)=\max _{t \geqslant 0} J\left(t w_{\mu_{0}}\right)=\frac{1}{N}\left[\frac{\int_{\mathbb{R}^{N}}\left|\nabla w_{\mu_{0}}\right|^{p} d x-\int_{\mathbb{R}^{N}} \frac{\lambda+h(x)}{|x|^{p}} w_{\mu_{0}}^{p} d x}{\left(\int_{\mathbb{R}^{N}}\left|w_{\mu_{0}}\right|^{p^{*}} d x\right)^{p / p^{*}}}\right]^{N / p}
$$

Using (51) we obtain that

$$
J\left(t_{0} w_{\mu_{0}}\right)<\frac{1}{N}\left[\frac{\int_{\mathbb{R}^{N}}\left|\nabla w_{\mu_{0}}\right|^{p} d x-(\lambda+H) \int_{\mathbb{R}^{N}} \frac{w_{\mu_{0}}^{p}}{|x|^{p}} d x}{\left(\int_{\mathbb{R}^{N}}\left|w_{\mu_{0}}\right|^{p^{*}} d x\right)^{p / p^{*}}}\right]^{N / p}=\frac{1}{N} S_{(\lambda+H)}^{\frac{N}{p}} \leqslant c^{*}
$$

We set

$$
\Gamma=\left\{\gamma \in C\left([0,1], \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right)\right): \gamma(0)=0 \text { and } J(\gamma(1))<0\right\} .
$$

Let

$$
c=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J(\gamma(t)) .
$$

Since $J\left(t_{0} w_{\mu_{0}}\right)<c^{*}$, then we get a mountain pass critical point u_{0}. Then we have just to prove that we can choose $u_{0} \geqslant 0$. Consider the Nehari manifold
$M \equiv\left\{u \in \partial^{1, p}\left(\mathbb{R}^{N}\right): u \neq 0\right.$ and $\left.\left\langle J^{\prime}(u), u\right\rangle=0\right\}$

$$
=\left\{u \in \mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right): u \neq 0 \text { and } \int_{\mathbb{R}^{N}}|\nabla u|^{p} d x=\int_{\mathbb{R}^{N}} \frac{\lambda+h(x)}{|x|^{p}}|u|^{p} d x+\int_{\mathbb{R}^{N}}|u|^{p^{*}} d x\right\} .
$$

Notice that $u_{0},\left|u_{0}\right| \in M$. Since u_{0} is a mountain pass solution to problem (44), then one can prove easily that $c \equiv J\left(u_{0}\right)=\min _{u \in M} J(u)$ (see [27]). Hence $J\left(\left|u_{0}\right|\right)=\min _{u \in M} J(u)$ and then $\left|u_{0}\right|$ is a critical point of J. Therefore by using the strong maximum principle by J. L. Vázquez, see [26], we conclude that $u_{0}>0$.

Remark 4.5. - It is immediate to see that hypothesis (51) is satisfied for example in the case in which $h(0)=h(\infty)=\min _{x \in \mathbb{R}^{N}} h(x)$ and $h \not \equiv$ const.

4.4. Perturbation in the nonlinear term.

In this section we deal with problem (19) with a perturbed coefficient of the nonlinear term, namely we study the following problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\frac{\lambda}{|x|^{p}} u^{p-1}+k(x) u^{p^{*}-1}, \quad x \in \mathbb{R}^{N}, \tag{52}\\
u>0 \text { in } \mathbb{R}^{N}, \text { and } u \in \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

where $N \geqslant 3,0<\lambda<\Lambda_{N, p}$ and k is a positive function.

4.5. Existence.

Assume that k verifies the following hypothesis

$$
\begin{equation*}
k \in L^{\infty}\left(\mathbb{R}^{N}\right) \cap C\left(\mathbb{R}^{N}\right) \quad \text { and } \quad\|k\|_{\infty}>\max \{k(0), k(\infty)\}, \tag{K0}
\end{equation*}
$$

where $k(\infty) \equiv \limsup _{|x| \rightarrow \infty} k(x)$. Let

$$
J_{\lambda}(u)=\frac{1}{p} \int_{\mathbb{R}^{N}}|\nabla u|^{p} d x-\frac{\lambda}{p_{\mathbb{R}^{N}}} \int \frac{|u|^{p}}{|x|^{p}} d x-\frac{1}{p^{*}} \int_{\mathbb{R}^{N}} k(x)|u|^{p^{*}} d x
$$

then critical points of J_{λ} are solutions to equation (52). Arguing as in Subsection 4.3, we can prove that Palais-Smale condition is satisfied below some level as stated in the following lemma.

Lemma 4.6. - Let $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right)$ be a Palais-Smale sequence for J_{λ}, namely

$$
J_{\lambda}\left(u_{n}\right) \rightarrow c<\infty \quad \text { and } \quad J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 .
$$

If

$$
c<\tilde{c}(\lambda)=\frac{1}{N} \min \left\{S^{\frac{N}{p}}\|k\|_{\infty}^{-\frac{N-p}{p}}, S_{\lambda^{p}}^{\frac{N}{p}}(k(0))^{-\frac{N-p}{p}}, S_{\lambda^{p}}^{\frac{N}{p}}(k(\infty))^{-\frac{N-p}{p}}\right\}
$$

then $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ has a converging subsequence.
Since the proof is similar to the proof of Theorem 4.3, we omit it. If k is a radial positive function, we can prove the following improved Palais-Smale condition.

Lemma 4.7. - Define

$$
\tilde{c}_{1}(\lambda)=\frac{1}{N} S_{\lambda^{p}}^{\frac{N}{p}} \min \left\{(k(0))^{-\frac{N-p}{p}},(k(\infty))^{-\frac{N-p}{p}}\right\} .
$$

If $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right)$ is a Palais-Smale sequence for J_{λ}, namely $J_{\lambda}\left(u_{n}\right) \rightarrow c$, $J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$, and $c<\tilde{c}_{1}$, then $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ has a converging subsequence.

We define

$$
b(\lambda) \equiv \begin{cases}+\infty & \text { if } k(0)=k(\infty)=0 \\ \frac{1}{N} S_{\lambda}^{N / p} \min \left\{k(0)^{-\frac{N-p}{p}}, k(\infty)^{\left.-\frac{N-p}{p}\right\}}\right. & \text { otherwise }\end{cases}
$$

Lemma 4.8. - If (K0) holds, there exists $\varepsilon_{0}>0$ such that $\frac{1}{N} S^{N / p}\|k\|_{\infty}^{-(N-p) / p} \leqslant b(\lambda)$ for all $\lambda \leqslant \varepsilon_{0}$ and

$$
\begin{equation*}
\tilde{c}(\lambda)=\tilde{c} \equiv \frac{1}{N} S^{N / p}\|k\|_{\infty}^{-\frac{N-p}{p}} \tag{53}
\end{equation*}
$$

for any $0<\lambda \leqslant \varepsilon_{0}$.
Proof. - From (K0) and by the fact that $S_{\lambda} \rightarrow S$ as $\lambda \rightarrow 0$, it follows that if λ is sufficiently small then $\frac{1}{N} S^{N / p}\|k\|_{\infty}^{-\frac{N-p}{p}} \leqslant b(\lambda)$ and hence the result follows.

As a consequence we obtain the following existence result.

Theorem 4.9. - Let k be a positive function such that (K0) is satisfied. Assume that there exists $\mu_{0}>0$ such that

$$
\begin{equation*}
\int_{\mathrm{R}^{N}} k(x) w_{\mu_{0}}^{p^{*}}(x) d x>\max \{k(0), k(\infty)\} \int_{\mathbb{R}^{N}} w_{\mu_{0}}^{p^{*}}(x) d x, \tag{54}
\end{equation*}
$$

where $w_{\mu_{0}}$ is a solution to problem

$$
\left\{\begin{array}{l}
-\Delta_{p} w=\frac{\lambda}{|x|^{p}} w^{p-1}+w^{p^{*}-1}, \quad x \in \mathbb{R}^{N} \\
w>0 \text { in } \mathbb{R}^{N}, \text { and } w \in \mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right)
\end{array}\right.
$$

Then (52) has at least a positive solution.
Proof. - Since the proof is similar to the proof of Theorem 4.4 we omit it.

5. - Multiplicity of positive solutions.

To find multiplicity results for problem (52) we need the following extra hypotheses on k
(K1) the set $\mathcal{C}(k)=\left\{a \in \mathbb{R}^{N} \mid k(a)=\max _{x \in \mathbb{R}^{N}} k(x)\right\}$ is finite, say $\mathcal{C}(k)=$ $\left\{a_{j} \mid 1 \leqslant j \leqslant \operatorname{Card}(\mathcal{C}(k))\right\} ;$
(K2) there exists $\theta \in\left(p, \frac{N}{p-1}\right)$ such that if $a_{j} \in \mathcal{C}(k)$ then $k\left(a_{j}\right)-k(x)=$
$\left.-a_{j} \mid\right)^{\theta}$ as $x \rightarrow a_{j}$. $o\left(\left|x-a_{j}\right|\right)^{\theta}$ as $x \rightarrow a_{j}$.

Consider $0<r_{0} \ll 1$ such that $B_{r_{0}}\left(a_{j}\right) \cap B_{r_{0}}\left(a_{i}\right)=\emptyset$ for $i \neq j, \quad 1 \leqslant i$, $j \leqslant \operatorname{Card}(\mathcal{C}(k))$. Let $\delta=\frac{r_{0}}{3}$ and for any $1 \leqslant j \leqslant \operatorname{Card}(\mathcal{C}(k))$ define the following function

$$
\begin{equation*}
T_{j}(u)=\frac{\int_{\mathbb{R}^{N}} \psi_{j}(x)|\nabla u|^{p} d x}{\int_{\mathbb{R}^{N}}|\nabla u|^{p} d x} \text { where } \psi_{j}(x)=\min \left\{1,\left|x-a_{j}\right|\right\} \tag{55}
\end{equation*}
$$

For the proof of the following separation lemma we refer to [1].
Lemma 5.1. - Let $u \in \mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right), u \not \equiv 0$, such that $T_{i}(u) \leqslant \delta$ and $T_{j}(u) \leqslant \delta$, then $i=j$.

Consider now the Nehari manifold,

$$
\begin{equation*}
M(\lambda)=\left\{u \in \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right): u \not \equiv 0 \text { and }\left\langle J_{\lambda}^{\prime}(u), u\right\rangle=0\right\} \tag{56}
\end{equation*}
$$

namely $u \in M(\lambda)$ if and only if $u \not \equiv 0$ and

$$
\int_{\mathbb{R}^{N}}|\nabla u|^{p} d x-\lambda \int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{p}} d x=\int_{\mathbb{R}^{N}} k(x)|u|^{p^{*}} d x
$$

Notice that for all $u \in \mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right)$ such that $u \not \equiv 0$, there exists $t>0$ with $t u \in$ $M(\lambda)$ and for all $u \in M(\lambda)$ we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla u|^{p} d x-\lambda \int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{p}} d x<\frac{p^{*}-1}{p-1} \int_{\mathbb{R}^{N}} k(x)|u|^{p^{*}} d x . \tag{57}
\end{equation*}
$$

Therefore we can prove easily the existence of $c_{1}>0$ such that

$$
\forall u \in M(\lambda), \quad\|u\|_{\infty^{1, p}\left(\mathbb{R}^{N}\right)} \geqslant c_{1} .
$$

Definition 5.2. - For any $0<\lambda<\Lambda_{N}$ and $1 \leqslant j \leqslant \operatorname{Card}(\mathcal{C}(k))$, let us consider
$M_{j}(\lambda)=$
$\left\{u \in M(\lambda): T_{j}(u)<\delta\right\}$ and its boundary $\Gamma_{j}(\lambda)=\left\{u \in M(\lambda): T_{j}(u)=\delta\right\}$.
We define

$$
m_{j}(\lambda)=\inf \left\{J_{\lambda}(u): u \in M_{j}(\lambda)\right\} \text { and } \eta_{j}(\lambda)=\inf \left\{J_{\lambda}(u): u \in \Gamma_{j}(\lambda)\right\} .
$$

The following two lemmas give the behaviour of the functional with respect to the critical level \tilde{c}. The proofs can be obtained with a small modification of the arguments used in [1].

Lemma 5.3. - Suppose that (K0), (K1), and (K2) hold, then $M_{j}(\lambda) \neq \emptyset$ and there exists $\varepsilon_{1}>0$ such that

$$
\begin{equation*}
m_{j}(\lambda)<\tilde{c} \quad \text { for all } 0<\lambda \leqslant \varepsilon_{1} \text { and } 1 \leqslant j \leqslant \operatorname{Card}(\mathcal{C}(k)) \tag{58}
\end{equation*}
$$

Lemma 5.4. - Suppose that (K0), (K1), and (K2) are satisfied, then there exists ε_{2} such that for all $0<\lambda<\varepsilon_{2}$ there holds

$$
\tilde{c}<\eta_{j}(\lambda) .
$$

We need now the following lemma that is suggested by the work of Tarantello [23]. See also [9].

Lemma 5.5. - Assume that $\lambda<\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$ where $\varepsilon_{1}, \varepsilon_{2}$ are given by Lemmas 5.3 and 5.4. Then for all $u \in M_{j}(\lambda)$ there exists $\varrho_{u}>0$ and a differentiable function

$$
f: B\left(0, \varrho_{u}\right) \subset \mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}
$$

such that $f(0)=1$ and for all $w \in B\left(0, \varrho_{u}\right)$ there holds $f(w)(u-w) \in M_{j}(\lambda)$. Moreover for all $v \in d^{1, p}\left(\mathbb{R}^{N}\right)$ we have

$$
\begin{align*}
& \left\langle f^{\prime}(0), v\right\rangle= \tag{59}\\
& -\frac{p \int_{\mathbb{R}^{N}}|\nabla u|^{p-2} \nabla u \nabla v d x-p \lambda \int_{\mathbb{R}^{N}} \frac{|u|^{p-2} u v}{|x|^{p}} d x-p^{*} \int_{\mathbb{R}^{N}} k(x)|u|^{2^{*}-2} u v d x}{(p-1)\left[\int_{\mathbb{R}^{N}}|\nabla u|^{p} d x-\lambda \int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{p}} d x\right]-\left(p^{*}-1\right) \int_{\mathbb{R}^{N}} k(x)|u|^{p^{*}} d x} .
\end{align*}
$$

Proof. - Let $u \in M_{j}(\lambda)$ and let $G: \mathbb{R} \times \mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ be the function defined by

$$
\begin{aligned}
& G(t, w)= \\
& \quad t^{p-1}\left(\int_{\mathbb{R}^{N}}|\nabla(u-w)|^{p} d x-\lambda \int_{\mathbb{R}^{N}} \frac{|u-w|^{p}}{|x|^{p}} d x\right)-t^{p^{*}-1} \int_{\mathbb{R}^{N}} k(x)|u-w|^{p^{*}} d x .
\end{aligned}
$$

Then $G(1,0)=0$ and

$$
G_{t}(1,0)=(p-1)\left[\int_{\mathbb{R}^{N}}|\nabla u|^{p} d x-\lambda \int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{p}} d x\right]-\left(p^{*}-1\right) \int_{\mathbb{R}^{N}} k(x)|u|^{p^{*}} d x \neq 0
$$

in view of (57). Then by using the Implicit Function Theorem we get the existence of $\varrho_{u}>0$ small enough and of a differentiable function $f: B\left(0, \varrho_{u}\right) \subset$ $\partial^{1, p}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ such that $f(0)=1$ and $G(f(w), w)=0$ for all $w \in B\left(0, \varrho_{u}\right)$, which implies that $f(w)(u-w) \in M_{j}(\lambda)$. Moreover, we have

$$
\begin{aligned}
\left\langle f^{\prime}(0), v\right\rangle & =-\frac{\left\langle G_{w}(1,0), v\right\rangle}{G_{t}(1,0)} \\
& =-\frac{p \int_{\mathbb{R}^{N}}|\nabla u|^{p-2} \nabla u \nabla v d x-p \lambda \int_{\mathbb{R}^{N}} \frac{|u|^{p-2} u v}{|x|^{p}} d x-p^{*} \int_{\mathbb{R}^{N}} k(x)|u|^{p^{*-2}} u v d x}{(p-1)\left[\int_{\mathbb{R}^{N}}|\nabla u|^{p} d x-\lambda \int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{p}} d x\right]-\left(p^{*}-1\right) \int_{\mathbb{R}^{N}} k(x)|u|^{p^{*}} d x} .
\end{aligned}
$$

The proof is thereby complete.

We are now in position to prove the main result of this section.

Theorem 5.6. - Assume that (K0), (K1), and (K2) hold, then there exists ε_{3} small such that for all $0<\lambda<\varepsilon_{3}$ equation (52) has $\operatorname{Card}(\mathcal{C}(k))$ positive solutions $u_{j, \lambda}$ such that

$$
\begin{equation*}
\left|\nabla u_{j, \lambda}\right|^{p} \rightarrow S^{N / p}\|k\|_{\infty}^{-(N-p) / p} \delta_{a_{j}} \text { and }\left|u_{j, \lambda}\right|^{p^{*}} \rightarrow S^{N / p}\|k\|_{\infty}^{-N / p} \delta a_{j} \text { as } \lambda \rightarrow 0 \tag{60}
\end{equation*}
$$

Proof. - Assume that $0<\lambda<\varepsilon_{3}=\min \left\{\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}\right\}$, where $\varepsilon_{0}, \varepsilon_{1}$ and ε_{2} are given by the Lemmas 4.8, 5.3 and 5.4. Let $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ be a minimizing sequence for J_{λ} in $M_{j}(\lambda)$, i.e. $u_{n} \in M_{j}(\lambda)$ and $J_{\lambda}\left(u_{n}\right) \rightarrow m_{j}(\lambda)$ as $n \rightarrow \infty$. Since $J_{\lambda}\left(u_{n}\right)=J_{\lambda}\left(\left|u_{n}\right|\right)$, we can choose $u_{n} \geqslant 0$. It is not difficult to prove the existence of c_{1}, c_{2} such that $c_{1} \leqslant\left\|u_{n}\right\|_{\Phi^{1, p}\left(\mathbb{R}^{N}\right)} \leqslant c_{2}$. By the Ekeland variational principle
we get the existence of a subsequence denoted also by $\left\{u_{n}\right\}$ such that

$$
J_{\lambda}\left(u_{n}\right) \leqslant m_{j}(\lambda)+\frac{1}{n} \text { and } J_{\lambda}(w) \geqslant J_{\lambda}\left(u_{n}\right)-\frac{1}{n}\left\|w-u_{n}\right\| \text { for all } w \in M_{j}(\lambda)
$$

Let $0<\varrho<\varrho_{n} \equiv \varrho_{u_{n}}$ and $f_{n} \equiv f_{u_{n}}$, where $\varrho_{u_{n}}$ and $f_{u_{n}}$ are given by Lemma 5.5. We set $v_{\varrho}=\varrho v$ where $\|v\|_{\Phi^{1}, p\left(\mathbb{R}^{N}\right)}=1$, then $v_{\varrho} \in B\left(0, \varrho_{n}\right)$ and we can apply Lemma 5.5 to obtain that $w_{\varrho}=f_{n}\left(v_{\varrho}\right)\left(u_{n}-v_{\varrho}\right) \in M_{j}(\lambda)$. Therefore we get

$$
\begin{aligned}
\frac{1}{n}\left\|w_{\varrho}-u_{n}\right\| & \geqslant J_{\lambda}\left(u_{n}\right)-J_{\lambda}\left(w_{\varrho}\right)=\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}-w_{\varrho}\right\rangle+o\left(\left\|u_{n}-w_{\varrho}\right\|\right) \\
& \geqslant \varrho f_{n}(\varrho v)\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), v\right\rangle+o\left(\left\|u_{n}-w_{\varrho}\right\|\right)
\end{aligned}
$$

Hence we conclude that

$$
\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), v\right\rangle \leqslant \frac{1}{n} \frac{\left\|w_{\varrho}-u_{n}\right\|}{\varrho f_{n}(\varrho v)}(1+o(1)) .
$$

Since $\left|f_{n}(\varrho v)\right| \rightarrow\left|f_{n}(0)\right| \geqslant c$ as $\varrho \rightarrow 0$ and

$$
\begin{aligned}
\frac{\left\|w_{\varrho}-u_{n}\right\|}{\varrho} & =\frac{\left\|f_{n}(0) u_{n}-f_{n}(\varrho v)\left(u_{n}-\varrho v\right)\right\|}{\varrho} \\
& \leqslant \frac{\left\|u_{n}\right\|\left|f_{n}(0)-f_{n}(\varrho v)\right|+|\varrho|\left|f_{n}(\varrho v)\right|}{\varrho} \leqslant C\left|f_{n}^{\prime}(0)\right|\|v\|+c_{3} \leqslant c .
\end{aligned}
$$

Therefore we conclude that $J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence $\left\{u_{n}\right\}$ is a Palais-Smale sequence for J_{λ}. Since $m_{j}(\lambda)<\tilde{c}$ and $\tilde{c}=\tilde{c}(\lambda)$ for $\lambda \leqslant \varepsilon_{0}$, then from Lemma 4.6 we get the existence result.

Let us now prove (60). Assume $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$ and let $u_{n} \equiv u_{j_{0}, \lambda_{n}} \in$ $M_{j_{0}}\left(\lambda_{n}\right)$ be a solution to problem (52) with $\lambda=\lambda_{n}$. Then up to a subsequence we get the existence of $\ell>0$ such that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{p} d x=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} k(x)\left|u_{n}\right|^{p^{*}} d x=\ell
$$

From Sobolev inequality, it follows that $\ell \geqslant S^{N / p}\|k\|_{\infty}^{-\frac{N-p}{p}}$. On the other hand since $u_{n} \in M\left(\lambda_{n}\right)$ we have

$$
\frac{\ell}{N}+o(1)=J_{\lambda_{n}}\left(u_{n}\right) \leqslant \frac{1}{N} S^{N / p}\|k\|_{\infty}^{-\frac{N-p}{p}}+o(1)
$$

which yields $\ell \leqslant S^{N / p}\|k\|_{\infty}^{-\frac{N-p}{p}}$. Therefore $\ell=S^{N / p}\|k\|_{\infty}^{-\frac{N-p}{p}}$ and hence

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\|k\|_{\infty}-k(x)\right)|u|_{n}^{p^{*}} d x=0 .
$$

We set $w_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{p^{*}}}$, then $\left\|w_{n}\right\|_{p^{*}}=1$ and $\lim _{n \rightarrow \infty}\left\|w_{n}\right\|_{ळ^{1}, p_{\left(\mathbb{R}^{N}\right)}}=S$. Hence we get the existence of $w_{0} \in \mathscr{\partial}^{1, p}\left(\mathbb{R}^{N}\right)$ such that one of the following alternatives holds

1. $w_{0} \not \equiv 0$ and $w_{n} \rightarrow w_{0}$ strongly in the $\mathscr{O}^{1, p}\left(\mathbb{R}^{N}\right)$.
$2 w_{0} \equiv 0$ and either
i) $\left|\nabla w_{n}\right|^{p} \rightharpoonup d \mu=S \delta_{x_{0}}$ and $\left|w_{n}\right|^{p^{*}} \rightarrow d \nu=\delta_{x_{0}}$
or
ii) $\left|\nabla w_{n}\right|^{p} \rightharpoonup d \mu_{\infty}=S \delta_{\infty}$ and $\left|w_{n}\right|^{p^{*}} \rightharpoonup d v_{\infty}=\delta_{\infty}$.

Arguing as in [1, Lemma 3.11] it is possible to show that the alternative 1 and the alternative 2 ii) can not hold. Then we conclude that the unique possible behaviour is the alternative 2 . i), namely we get the existence of $x_{0} \in \mathbb{R}^{N}$ such that

$$
\left|\nabla w_{n}\right|^{p} \rightharpoonup d \mu=S \delta_{x_{0}} \text { and }\left|w_{n}\right|^{p^{*}} \rightharpoonup d \nu=\delta_{x_{0}} .
$$

Since

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left|\nabla w_{n}\right|^{p} d x & =S+o(1)=S \int_{\mathbb{R}^{N}}\left|w_{n}\right|^{p^{*}} d x+o(1)=\frac{S}{\|k\|_{\infty}} \int_{\mathbb{R}^{N}} k(x)\left|w_{n}\right|^{p^{*}} d x+o(1) \\
& =\frac{S}{\|k\|_{\infty}} k\left(x_{0}\right)+o(1),
\end{aligned}
$$

then we obtain that $x_{0} \in \mathcal{C}(k)$. Using Lemma 5.1, we conclude that $x_{0}=a_{j_{0}}$ and the result follows.

6. - Further results.

In this section we use the Lusternik-Schnirelman category theory to get multiplicity results for problem (52), we refer to [4] for a complete discussion. We follow the argument by Musina see [17]. We assume that k is a nonnegative function and that $0<\lambda<\bar{\varepsilon}_{0}$ where $\bar{\varepsilon}_{0}$ is chosen in such a way that $\left(\frac{S_{\bar{\varepsilon}_{0}}}{S}\right)^{N / p}>\frac{1}{2}$ and $\bar{\varepsilon}_{0} \leqslant \varepsilon_{0}$, being ε_{0} given in Lemma 4.8. We set for $\delta>0$

$$
\mathcal{C}(k)=\left\{a \in \mathbb{R}^{N} \mid k(a)=\|k(x)\|_{\infty}\right\} \text { and } \mathcal{C}_{\delta}(k)=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, \mathcal{C}(k)) \leqslant \delta\right\} .
$$

We suppose that (K2) and the following assumption (K3) there exist $R_{0}, d_{0}>0$ such that $\sup _{|x|>R_{0}}|k(x)| \leqslant\|k\|_{\infty}-d_{0}$ hold. Let $M(\lambda)$ be defined by (56). Consider

$$
\widetilde{M}(\lambda) \equiv\left\{u \in M(\lambda): J_{\lambda}(u)<\tilde{c}\right\} .
$$

Then we have the following results.
Lemma 6.1. - Let $\left\{v_{n}\right\}_{n \in \mathbb{N}} \subset M(\lambda)$ be such that $J_{\lambda}\left(v_{n}\right) \rightarrow c<\tilde{c}$ and $J_{\left.\lambda\right|_{M(\lambda)}}^{\prime}\left(v_{n}\right) \rightarrow 0$, then $\left\{v_{n}\right\}_{n \in \mathbb{N}}$ contains a convergent subsequence. Moreover there exists $\bar{\varepsilon}_{1}>0$ such that if $0<\lambda<\lambda_{0}:=\min \left\{\bar{\varepsilon}_{0}, \bar{\varepsilon}_{1}\right\}$, then $\widetilde{M}(\lambda) \neq \emptyset$ and
for any $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{R}_{+}$such that $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\left\{v_{n}\right\}_{n \in \mathbb{N}} \subset \widetilde{M}\left(\lambda_{n}\right)$, there exist $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{R}^{N}$ and $\left\{r_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{R}_{+}$such that $x_{n} \rightarrow x_{0} \in \mathcal{C}(k), r_{n} \rightarrow 0$ as $n \rightarrow$ ∞ and

$$
\begin{equation*}
v_{n}-\left(\frac{S}{\|k\|_{\infty}}\right)^{\frac{N-p}{p^{2}}} u_{r_{n}}\left(\cdot-x_{n}\right) \rightarrow 0 \text { in } \mathscr{D}^{1, p}\left(\mathbb{R}^{N}\right) \tag{61}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{r}(x)=\frac{C_{r}}{\left(r^{\frac{p}{p-1}}+|x|^{\frac{p}{p-1}}\right)^{\frac{N-p}{p}}} \tag{62}
\end{equation*}
$$

and C_{r} is the normalizing constant to be $\left\|u_{r}\right\|_{p^{*}}=1$.
Proof. - The proof is a direct modification of the arguments used in [1] and it will be omitted.

Remark 6.2. - Notice that as a consequence of the above lemma we obtain the existence of at least $\operatorname{cat}(\widetilde{M}(\lambda))$ solutions that eventually can change sign.

The main result of this section is the following Theorem, for the proof of which we refer to [1].

Theorem 6.3. - Assume that hypotheses (K0), (K2) and (K3) hold and let $\delta>0$. Then there exists $\lambda_{0}>0$ such that for all $0<\lambda<\lambda_{0}$, equation (52) has at least $\operatorname{cat}_{\mathfrak{C}_{\delta}(k)} \mathcal{C}(k)$ positive solutions.

Remark 6.4.
i) If $\mathcal{C}(k)$ is finite, then for λ small, equation (52) has at least $\operatorname{Card}(\mathcal{C}(k))$ solutions.
ii) We give now a typical example where equation (52) has infinitely many solutions. Let $\eta: \mathbb{R} \rightarrow \mathbb{R}_{+}$be such that η is regular, $\eta(0)=0$ and $\eta(r)=1$ for $r \geqslant \frac{1}{2}$. We define k_{1} on $[0,1] \subset \mathbb{R}$ by

$$
k_{1}(r)= \begin{cases}1 & \text { if } r=0, \\ 1-\eta(r)\left|\sin \frac{1}{r}\right|^{\theta} \quad & \text { if } 0<r \leqslant 1,\end{cases}
$$

where $p<\theta<N$. Notice that k_{1} has infinitely many global maxima achieved on the set

$$
\mathcal{C}\left(k_{1}\right)=\left\{r_{n}=\frac{1}{n \pi} \text { for } n \geqslant 1\right\} .
$$

Now we define k to be any continuous bounded function such that $k(x)=$ $k_{1}(|x|)$ if $|x| \leqslant 1,\|k\|_{\infty} \leqslant 1$ and $\lim _{|x| \rightarrow \infty} k(x)=0$. Since for all $m \in \mathbb{N}$ there exists $\delta(m)$ such that $\operatorname{cat}(\mathcal{C})_{\mathfrak{C}_{\delta}}=m$, then we conclude that equation (52) has at least m solutions for $\lambda<\lambda(\delta)$.

REFERENCES

[1] B. Abdellaui - V. Felli - I. Peral, Existence and multiplicity for perturbations of an equation involving Hardy inequality and critical Sobolev exponent in the whole \mathbb{R}^{N}, Adv. Diff. Equations, 9 (2004), 481-508.
[2] B. Abdelladu - I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p-laplacian, Ann. Mat. Pura. Applicata, 182 (2003), 247-270.
[3] W. Allegretto - Yin Xi Huang, A Picone's identity for the p-Laplacian and applications, Nonlinear. Anal. TMA., 32, no. 7 (1998), 819-830.
[4] A. Ambrosetti, Critical points and nonlinear variational problems, Mém. Soc. Math. France (N.S.), no. 49 (1992).
[5] A. Ambrosetti - H. Brezis - G. Cerami, Combined Effects of Concave and Convex Nonlinearities in some Elliptic Problems, Journal of Functional Anal., 122, no. 2 (1994), 519-543.
[6] A. Ambrosetti - J. García Azorero - I. Peral, Elliptic variational problems in \mathbb{R}^{N} with critical growth, J. Diff. Equations, 168, no. 1 (2000), 10-32.
[7] H. Brezis - X. Cabré, Some simple PDE's without solution, Boll. Unione. Mat. Ital. Sez. B, 8, no. 1 (1998), 223-262.
[8] J. Brothers - W. Ziemer, Minimal rearrangements of Sobolev functions, Acta Univ. Carolin. Math. Phys. 28, no. 2 (1987), 13-24.
[9] D. Cao - J. Chabrowski, Multiple solutions of nonhomogeneous elliptic equation with critical nonlinearity, Differential Integral Equations, 10, no. 5 (1997), 797-814.
[10] B. Franchi - E. Lanconelli - J. Serrin, Existence and uniqueness of nonnegative solutions of quasilinear equations in \mathbb{R}^{n}, Adv. Math., 118, no. 2 (1996), 177-243.
[11] J. García Azorero - E. Montefusco - I. Peral, Bifurcation for the p-laplacian in \mathbb{R}^{N}, Adv. Differential Equations, 5, no. 4-6 (2000), 435-464.
[12] J. García Azorero - I. Peral, Hardy Inequalities and some critical elliptic and parabolic problems, J. Diff. Eq., 144 (1998), 441-476.
[13] J. García Azorero - I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term, Trans. Amer. Math. Soc., 323, no. 2 (1991), 877-895.
[14] N. Ghoussoub - C. Yuan, Multiple solution for Quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352, no. 12 (2000), 5703-5743.
[15] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 1, Rev. Matemática Iberoamericana, 1, no. 1 (1985), 541-597.
[16] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 2, Rev. Matemática Iberoamericana, 1, no. 2 (1985), 45-121.
[17] R. Musina, Multiple positive solutions of a scalar field equation in \mathbb{R}^{N}, Top. Methods Nonlinear Anal., 7 (1996), 171-186.
[18] I. Peral, Some results on Quasilinear Elliptic Equations: Growth versus Shape, in Proceedings of the Second School of Nonlinear Functional Analysis and Applications to Differential Equations, I.C.T.P. Trieste, Italy, A. Ambrosetti and it alter editors. World Scientific, 1998.
[19] M. Picone, Sui valori eccezionali di un parametro da cui dipende una equazione differenziale lineare ordinaria del secondo ordine, Ann. Scuola. Norm. Pisa., 11 (1910), 1-144.
[20] G. Polya - G. Szego, Isoperimetric inequalities in mathematical physics, Gosudarstv. Izdat. Fiz. Mat., Moscow 1962.
[21] D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Trans. AMS, to appear.
[22] J. Simon, Regularité de la solution d'une equation non lineaire dans \mathbb{R}^{N}, Lectures Notes in Math, no. 665, P. Benilan editor, Springer Verlag, 1978.
[23] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire. 9, no. 3 (1992), 281-304.
[24] P. Tolksdorf, Regularity for more general class of quasilinear elliptic equations, J. Diff. Eq., 51 (1984), 126-150.
[25] S. Terracini, On positive entire solutions to a class of equations with singular coefficient and critical exponent, Adv. Diff. Equ., 1, no. 2 (1996), 241-264.
[26] J. L. Vázquez, A Strong Maximum Principle for Some Quasilinear Elliptic Equations, Applied Math. and Optimization., 12, no. 3 (1984), 191-202.
[27] M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996.

Boumediene Abdellaoui - Ireneo Peral: Departamento de Matemáticas
Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain e-mail: boumediene.abdellaoui@uam.es; ireneo.peral@uam.es
Veronica Felli: Dipartimento di Matematica e Applicazioni Università di Milano Bicocca, Via Cozzi, 53
20125 Milano, Italy; e-mail: felli@matapp.unimib.it.

