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Bollettino U. M. I.
(8) 9-B (2006), 445-484

Existence and Nonexistence Results
for Quasilinear Elliptic Equations Involving the p-Laplacian.

BOUMEDIENE ABDELLAOUI - VERONICA FELLI - IRENEO PERAL (*)

Sunto. – L’articolo riguarda lo studio di un’equazione ellittica quasi-lineare con il p-
laplaciano, caratterizzata dalla presenza di un termine singolare di tipo Hardy ed
una nonlinearità critica. Si dimostrano dapprima risultati di esistenza e non esi-
stenza per l’equazione con un termine singolare concavo. Quindi si passa a studia-
re il caso critico legato alla disuguaglianza di Hardy, fornendo una descrizione del
comportamento delle soluzioni radiali del problema limite e ottenendo risultati di
esistenza e molteplicità mediante metodi variazionali e topologici.

Summary. – The paper deals with the study of a quasilinear elliptic equation involving
the p-laplacian with a Hardy-type singular potential and a critical nonlinearity.
Existence and nonexistence results are first proved for the equation with a concave
singular term. Then we study the critical case related to Hardy inequality, provi-
ding a description of the behavior of radial solutions of the limiting problem and
obtaining existence and multiplicity results for perturbed problems through varia-
tional and topological arguments.

1. – Introduction.

In this paper we study the following elliptic problem

.
/
´

2D p u4
lh(x)

NxNp
NuNq21 u1g(x)NuNp *21 u , in RN ,

u(x) D0, u� D1, p (RN ) ,

(1)

where NF3, lD0, 0 EqGp21, 1 EpEN , and p *4Np/(N2p) is the criti-
cal Sobolev exponent. Here D1, p (RN ) denotes the space obtained as the com-

(*) First and third authors partially supported by Project BFM2001-0183. Second
author supported by Italy MIUR, national project «Variational Methods and Nonlinear
Differential Equations».
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pletion of the space of smooth functions with compact support with respect to
the norm

VuV4g s
RN

N˜uNp dxh1/p

.

Notice that the potential 1 /NxNp is related to the Hardy-Sobolev inequality.
More precisely we have the following result.

LEMMA 1.1 (Hardy-Sobolev inequality). – Suppose 1 EpEN . Then for all
u� D1, p (RN ), we have

s
RN

NuNp NxN2p dxGL N , p
21 s

RN

N˜uNp dx , L N , p 4g N2p

p
hp

.(2)

Moreover L N , p
21 is optimal and it is not achieved.

In bounded domains the above problem has been studied in [2], [5], [7],
[11], [12], [13], [14] and [18] (see also the references in these papers). In the
whole RN and for p42 there are some results in [21] and in [1].

Let us briefly recall the known results for bounded domains and h4g41,
because it will be useful to give some insight to the problem in RN .

In the case in which q4p21 and V is a starshaped domain with respect to
the origin, a Pohozaev type argument proves that there is no positive solution
in W0

1, p (V). If qDp21 and h(x) f1, there is no positive solution even in the
stronger sense of entropy solutions (in the case p42 this notion of solution is
equivalent to the distributional one). This nonexistence result is also true in
the case q4p21 and lDL N , p .

Finally if 0 EqEp21, there exists some l*D0 such that the problem has
solution for l� (0 , l*] and has no solution if lDl*.

This paper is organized as follows. Section 2 is devoted to the study of the
case qEp21; we prove the existence of l*D0 such that for any lGl* there
exists a positive solution. Some results on comparison of solutions and nonexi-
stence for large l are also obtained.

Section 3 deals with the case q4p21, hfgf1, and 0 ElEL N , p . In this
case we prove the existence of a one dimensional manifold of positive solutions.
In subsection 3.2 we analyze the behaviour of radial solutions and we get an
uniqueness result modulo rescaling. Notice that, in the case p42, the result
obtained by Terracini in [25] gives a complete classification of solutions since
moving plane method can be applied in such a case.

Section 4 is devoted to the study of nonexistence and existence for the case
q4p21, gf1, and h satisfying suitable conditions. We will use the concen-
tration-compactness principle by P.L. Lions to prove that the Palais-Smale
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condition holds below some critical threshold, thus obtaining existence results
under some condition on h . The same analysis can be carried out if we assume
that hf1 and g satisfies some convenient conditions.

In the last section multiplicity of solutions is proved in the case in which
hf1 and g satisfies some conditions. Such multiplicity results are obtained by
using some variational and topological argument as in [1].

h V bounded V4RN

qEp21 nonconstant existence existence

qEp21 constant existence non existence

q4p21 constant non existence in starshaped domains existence

qDp21 constant non existence non existence

Acknowledgment. Part of this work was carried out while the second au-
thor was visiting Universidad Autónoma of Madrid; she wishes to express her
gratitude to Departamento de Matemáticas of Universidad Autónoma for its
warm hospitality.

2. – The concave case related to the p-Laplacian.

Throughout this section we assume that 0 EqEp21 and gf1, namely we
deal with the following problem

.
/
´

2D p u4
lh(x) u q

NxNp
1u p *21 , in RN ,

u(x) D0, u� D1, p (RN ) ,

(3)

where 0 EqEp21 and h is a positive function such that

s
RN

h a (x)

NxNp
dxEQ where a4

p

p2 (q11)
.(h)

For simplicity of notation we set

VhVL a (NxN2p dx) »4u s
RN

h a (x)

NxNp
dxv

p2 (q11)

p

.

We will use the following version of the well known Picone’s Identity in [19].
For the proof we refer to [2](see also [3]).
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THEOREM 2.1. – If u� D1, p (RN ), uF0, v� D1, p (RN ), 2D p vF0 is a boun-
ded Radon measure, vF0 and not identically zero, then

s
RN

N˜uNp F s
RN

u p

v p21
(2D p v) .

As an application of Theorem 2.1, we get the following lemma, the proof of
which can be obtained as a simple modification of the argument used in
[2].

LEMMA 2.2. – Let u , v� D1, p (RN ) be such that

.
/
´

2D p uF
h(x) u q

NxNp
, in RN ,

uD0 in RN , u� D1, p (RN ) ,

(4)

.
/
´

2D p vG
h(x) v q

NxNp
in RN ,

vD0 in RN , v� D1, p (RN ) ,

(5)

where 0 EqEp21 and h is a nonnegative function such that hg0. Then
uFv in RN .

As a direct consequence we have the following lemma.

LEMMA 2.3. – The problem

.
/
´

2D p w4
h(x)

NxNp
w q in RN ,

wD0 in RN , w� D1, p (RN ) ,

(6)

with qEp21 and h satisfying (h), has a unique positive solution.

PROOF. – Existence can be proved by using a classical minimizing argu-
ment. To obtain uniqueness one can use Lemma 2.2. r

Week solutions to problem (3) can be found as critical points of the
functional

Jl (u) 4
1

p
s

RN

N˜uNp dx2
l

q11
s

RN

h(x)

NxNp
NuNq11 dx2

1

p *
s

RN

NuNp * dx .(7)

Using Hölder, Hardy, and Sobolev inequalities we obtain that for some positi-
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ve constants c and c1

Jl (u) F
1

p
VuVD1, p (RN )

p 2
lc

q11
VuVD1, p (RN )

q11 2
c1

p *
VuVD1, p (RN )

p * , (u� D1, p (RN ) .

Therefore we get the existence of a�RN , r0 D0, and l 1 D0 such that for any
l� [0 , l 1 ] there holds

1) Jl (u) is bounded from below in Br0
f ]u� D1, p (RN ) : VuVD1, p (RN ) Er0 (

and I4 inf ]Jl (u) for u�Br0
( E0;

2) Jl (u) FaDI for VuV4r0 .

To prove that the minimum is achieved we need the following lemma.

LEMMA 2.4. – Let C(N , p , q , h) be such that

1

N
s p 2lL N , p

2
q11

p g 1

q11
2

1

p *
h VhVL a (NxN2p dx) s q11 F

2C(N , p , q , h) l
p

p2q21 , (sD0 .

Then for any sequence ]un ( % D1, p (RN ) with

Jl (un ) KcEc(l) f

1

N
S

N

p 2C(N , p , q , h) l
p

p2q21 and Jl8 (un ) K0 ,(8)

where S is the Sobolev constant for the p-Laplacian, there exists a subsequen-
ce that converges strongly in D1, p (RN ).

PROOF. – We use the following result which can be proved by adapting the
argument used in [6] for the Laplacian.

LEMMA 2.5. – Let ]un ( % D1, p (RN ) be a sequence satisfying the hypotheses
of Lemma 2.4. Then for any hD0 there exists rD0 such that

s
NxNDr

N˜unNp dxEh .

We come back to the proof of Lemma 2.4. Since ]un ( is a Palais-Smale se-
quence, it is bounded, i.e., Vun VD1, p (RN ) GM , then up to a subsequence still de-
noted by ]un (,

1. un � u0 in D1, p (RN );

2. un Ku0 almost everywhere and in L a
loc (RN ) for any a� [1 , p *).
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Using the Concentration Compactness Principle by P. L. Lions (see [15])
we conclude that ]un ( satisfies

1. N˜unNp � dmFN˜u0N
p 1 !

j�J
m j d j .

2. NunNp * � dn4Nu0N
p * 1 !

j�J
n j d j .

3. Sn j

p

p * Gm j for any j�J , where J is an at most countable set.

Then it is not difficult to prove that either n j 40 or n j 4m j . Therefore, if
the singular part is not identically zero, i.e., if n j c0, we have that n j FS

N

p . In
view of hypothesis (h) and weak convergence of ]un (, Vitali’s Convergence
Theorem yields

s
RN

h(x)NunNq11

NxNp
K s

RN

h(x)Nu0N
q11

NxNp
.

If we assume that n j c0 for some j , then, for eD0, we have

c1eDJl (un )2
1

p *
(J 8 (un ), un ) 4

1

N
s

RN

N˜unNp 2lg 1

q11
2

1

p *
h s

RN

h(x)NunNq11

NxNp

and, since e is arbitrary, using the definition of C(N , p , q , h) we obtain
that

c(l) DcF
1

N
S

N

p 2C(N , p , q , h) l
p

p2q21

which is a contradiction with the hypothesis on c(l). Then n j 4m j 40 for all j
and un Ku0 strongly in D1, p (RN ). r

Notice that for l small, c(l) D0, therefore since IE0 we get the existence
of u0 � D1, p (RN ) such that Jl (u0 ) 4Jl (Nu0 N) 4IE0. Then problem (3) has at
least a positive solution for l small.

We set

A 4 ]lD0 such that problem (3) has a positive solution( ,

then using Lemma 2.2 and a monotonicity argument, we can prove easily that
A is an interval and that, for all l� A, problem (3) has a minimal solution ul .
We prove now that A is bounded. More precisely we have the following
result.
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THEOREM 2.6. – Let l*4 sup ]lNProblem (3) has solution(, then l*EQ .

Theorem 2.6 is a particular case of a result proved in [11]. We formulate he-
re a more general theorem that extends the result in [11] and gives a more
precise estimate on l*. Namely we consider the problem

.
/
´

2D p u4
lh(x) u q

NxNp
1g(x) u p *21 in RN ,

uD0 in RN , u� D1, p (RN ) ,

(9)

where g is a bounded positive function and q and h are as above. We set

l*4 sup ]lNProblem (9) has solution( .(10)

If the supports of h and g have nonempty intersection, it was proved in [11]
that l*EQ . The following theorem states that the same result holds true in
the general case.

THEOREM 2.7. – Let l* be defined in (10) then l*EQ .

PROOF. – When supp (h)Osupp (g) c¯ the result is known (see for instan-
ce [11]). We prove the result in the general case. Without loss of generality we
can assume that lD1, if not we are done. Let ul be a positive solution to pro-
blem (3) with fixed l . Then 2D p ulFlNxN2p h(x)ul

q . Let v1 be the unique sol-
ution to problem

.
/
´

2D p v4
h(x)

NxNp
v q , x�RN ,

vD0, v� D1, p (RN ) ,

(11)

see Lemma 2.3. We set vl4l
1

p2 (q11) v1 , then 2D p vlGlNxN2p h(x)vl
q . Since ul

is a supersolution to problem (3), then from Lemma 2.2 we obtain that ulF

vl4l
1

p2 (q11) v1 . Consider the following eigenvalue problem

.
/
´

2D p w4m(p *2p) g(x) ul
p *2p NwNp22 w in RN ,

w� D1, p (RN ) .

Let m1 be the first eigenvalue and w1 the corresponding normalized eigenfun-
ction. Then we have

m1 4 min
w� D1, p (RN )

s
RN

N˜wNp dx

s
RN

(p *2p) g(x) ul
p *2p NwNp dx

.

Since ul
p *2p �L

N

p (RN ) and ulD0, the minimum is achieved. Now by using
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Theorem 2.1 we obtain that

s
RN

N˜w1N
p dx2s

RN

2D p ul

u p21
l

w p
1 F0 .

Since 2D p ulFg(x) u p *21
l we conclude that

s
RN

N˜w1N
p dx2s

RN

g(x) w p
1 u p *2p

l F0 .

By the definition of w1 we get

s
RN

N˜w1N
p 4m1 (p *2p) s

RN

g(x)w p
1 u p *2p

l .

Therefore we obtain

m1 F
1

p *2p
.

Using the definition of m1 we obtain that

1

p *2p
Gm1 G inf

w� D1, p (RN )

s
RN

N˜wNp dx

(p *2p) s
RN

g(x) ul
p *2p NwNp dx

.

Since ulFl
1

p2 (q11) v1 , we have

1 G inf
w� D1, p (RN )

s
RN

N˜wNp dx

l
p *2p

p2 (q11) s
RN

g(x) v1
p *2p NwNp

.

So we get

l
p *2p

p2 (q11) G inf
w� D1, p (RN )

s
RN

N˜wNp dx

s
RN

g(x) v1
p *2p NwNp dx

4 m .
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Then l
p *2p

p2 (q11) G m where m is the first eigenvalue to problem

.
/
´

2D p w4m(g(x) v1
p *2p )NwNp22 w in RN ,

w� D1, p (RN ) .

Then l*E m
p2 (q11)

p *2p , and the proof is complete. r

To prove that l*� A the following lemma is in order.

LEMMA 2.8. – Let ul be the minimal solution to problem (3), then
Jl (ul ) E0.

PROOF. – Fixed l 0 � A and let ul 0
the minimal solution to (3) with l4l 0 .

Let

M4 ]u� D1, p (RN ), vl 0
GuGul 0

( ,

where vl 0
is the unique positive solution to problem

.
/
´

2D p w4l 0
h(x)

NxNp
w q

wD0 ,

in RN ,

in RN , w� D1, p (RN ) ,

see Lemma 2.3. Then M is a convex closed set in D1, p (RN ). Since Jl 0
is weakly

lower semi continuous, bounded from below, and coercive in M , then we get
the existence of w0 �M such that min

M
Jl 0

(u) 4Jl 0
(w0 ). Hence for all v�M we

have

s
RN

N˜w0N
p22 ˜w0 ˜(v2w0 ) dxF s

RN

g l 0 h(x) w0
q

NxNp
1w0

p *21h (v2w0 ) ,(12)

and vl 0
Gw0 Gul 0

. We claim that w0 4ul 0
. Since ul 0

4 lim
nKQ

un where un is defi-
ned by u0 4vl 0

and

.
/
´

2D p un11 4
l 0 h(x) un

q

NxNp
1un

p *21 in RN ,

un D0 in RN , un � D1, p (RN ) ,

(13)

we have just to prove that un Gw0 for all n . If n40 the result is verified by the
definition of w0 . Let v1 4w0 1 (u1 2w0 )1 . Since vl 0

Gu1 Gul 0
, then v1 �M and

by using (12) we obtain that

s
RN

N˜w0N
p22 ˜w0 ˜(u1 2w0 )1 dxF s

RN

g l 0 h(x) w0
q

NxNp
1w0

p *21h (u1 2w0 )1 .
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Taking (u1 2w0 )1 as a test function in (13) with n40 we obtain that

s
RN

N˜u1N
p22 ˜u1 ˜(u1 2w0 )1 dx4 s

RN

g l 0 h(x) vl 0

q

NxNp
1vl 0

p *21h (u1 2w0 )1 .

Then by using the fact that vl 0
Gw0 we conclude that

s
RN

(N˜u1N
p22 ˜u1 2N˜w0N

p22 ˜w0) Q˜(u1 2w0 )1 dxG0 .(14)

We set Dp (x , y) 4NxNp22 x2NyNp22 y where x , y�RN , then we have the fol-
lowing inequality (see [22])

aDp (x , y), x2yb F

.
/
´

Cp Nx2yNp

Cp
Nx2yN2

(NxN1NyN)22p

if pF2 ,

if pE2 .
(15)

Therefore, by (14) and using (15), we conclude that (u1 2w0 )140 and then
u1 Gw0 . Since the sequence ]un ( is increasing, the result follows by an induc-
tion argument. Therefore un Gw0 and we conclude that ul 0

Gw0 . Hence w0 4

ul 0
. Since Jl 0

(w0 ) GJl 0
(vl 0

) E0, we conclude that Jl 0
(ul 0

) E0. r

We get now the following existence result.

LEMMA 2.9. – l*� A.

PROOF. – Let ]l n ( be an increasing sequence such that l n Hl*. Denote by
ul the minimal solution to problem (3). From Lemma 2.8, we know that
Jl n

(ul n
) E0, which implies Vul n

VD1, p (RN ) GM . Since the sequence ]ul n
( is an

increasing sequence, we get the existence of ul* 4 lim
nKQ

ul n
which is a solution

to (9) with l4l*. r

In the case in which hf1, we have the following nonexistence result.

LEMMA 2.10. – Let u0 be a solution to the following problem

.
/
´

2D p u4
lu q

NxNp
1u p *21 in RN ,

uD0 in RN , u� D1, p
loc (RN ),

(16)

where 0 EqEp21, then u0 f0.
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PROOF. – For RF1, let us consider the problem

.
/
´

2D p u4
lu q

NxNp
1u p *21 in BR (0) ,

uD0 in BR (0), uN¯BR (0) 40 .

(17)

Let l*R 4 max ]lD0 : problem (17) has a solution(. By a rescaling argument
we can prove that l*R 4R

2
p

p *2p
(p2q21)

l*1 , hence l*R K0 as RKQ . Let u0 be a
positive solution to (16), then there exists R0 c 1 such that l*R 4

R
2

p

p *2p
(p2q21)

l*1 El for RFR0 . Since u0 is a super solution to (17) and vl , the
solution of

.
/
´

2D p vl4
lvl

q

NxNp
in BR (0) ,

vlD0 in BR (0), vlN¯BR (0) 40 ,
(18)

is a subsolution of (17) such that vlGu0 , then by an iteration argument we can
prove that problem (17) has a positive solution w such that vlGwGu0 which is
a contradiction with the definition of l*R . Hence we conclude. r

3. – The critical case related to Hardy inequality.

3.1. Existence result.

In this section we will study problem (1) with hfgf1 and q4p21, i.e.

.
/
´

2D p u4l
u p21

NxNp
1u p *21 , x�RN

uD0 in RN , u� D1, p (RN )

(19)

where p *4
pN

N2p
and 0 ElEg N2p

p
hp

. As a consequence of a Pohozaev type

identity, one can see that problem (19) does not have nontrivial solution in any
bounded starshaped domain with respect to the origin, see Lemma 3.7 of [12].
This motivates the work in RN .

The case p42 has been studied in [25], where it is shown that problem (19)
(for p42) has a one dimensional manifold of positive solutions given by

zm (r) 4m
2(N22)

2 zlg r

m
h where

zl (x) 4
cN

(NxN12n l (11NxN2n l ))
N22

2

,

n l4g12
4l

(N22)4 h
1

2

and cN 4 (N(N22) n l
2)

N22

2 .
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We will partially extend the result of [25] to the case of the p-laplacian, namely
we will describe the behaviour of all radial positive solutions to equation (19).
We set

Ql (u) 4 s
RN

N˜uNp dx2ls
RN

NuNp

NxNp
dx(20)

and

K4{u�D 1, p (RN ) Ns
RN

NuNp * dx41} .

Let

A(l) 4 inf
u�D 1, p (RN )0]0(

Ql (u)

s
RN

NxN2p NuNp dx
.

The first result of this section is the following lemma.

LEMMA 3.1. – Assume that A(l) E0, then problem (19) has no positive
solution.

PROOF. – Arguing by contradiction, assume that A(l) E0 and problem (19)
has a positive solution u . Then since A(l) E0 there exists f�C Q

0 (RN ) such
that Ql (f) E0, i.e.

s
RN

N˜fNp 2ls
RN

NfNp

NxNp
E0 .

Since f�C Q
0 (RN ), from Theorem 2.1 we obtain that

s
RN

N˜fNp F s
RN

2D p u

u p21
NfNp .

Therefore we get

s
RN

N˜fNp 2ls
RN

NfNp

NxNp
F s

RN

u p *2p NfNp F0 ,

which yields a contradiction with the choice of f . The proof is thereby
complete. r

LEMMA 3.2. – Assume that A(l) D0, then Ql (u) is an equivalent norm to
the norm of the space D1, p (RN ).
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Set

Sl4 inf
u�K

Ql (u) .(21)

It is easy to see that SlD0 and SlES where S is the best Sobolev constant for
the embedding D1, p (RN ) %L p * (RN ). We prove now the following existence
result.

THEOREM 3.3. – Assume that l�g0,g N2p

p
hph , then there exists u0 �K

such that Sl4Ql (u0 ). In particular there exists a positive constant c such
that cu0 is a positive solution of (19).

PROOF. – Let ]un ( be a minimizing sequence to (21). Since l�

g0,g N2p

p
hph and by classical Hardy inequality, we get that ]un ( is bounded

in D1, p (RN ). Therefore using the concentration-compactness principle, see
[15], we get the existence of a sequence of positive numbers ]s n ( such that the

sequence un 4s n
2

N2p

N ung Q

s n
h is relatively compact in D1, p (RN ). The sequen-

ce ]un (n is also a minimizing one. We can get easily that u0 4 lim
nKQ

un �K and
Ql (u0 ) 4Sl .

Moreover u0 satisfies the following Euler-Lagrange equation

2D p u2l
u p21

NxNp
4Sl u p *21 .(22)

If we set v4cu0 where c4Sl

1

p *2p then v is a solution of (19). r

Now we have the following result concerning the regularity of solutions to
(19).

REMARK 3.4. – Let u be any solution of (19), then u�C 1, a (RN 2 ]0().

PROOF. – Let u0 be any solution. For 0 EeER , we set V4B(R)0B(e)
where B(e) (resp. B(R)) is the ball in RN of center 0 and radius e (resp. R). Sin-
ce u0 � D1, p (RN ), then u0 �W 1/p 8 , p (¯B(e) ) and u0 �W 1/p 8 , p (¯B(R) ). Since u0 is
a solution to problem

.
`
/
`
´

2D p u4l
u p21

NxNp
1u p *21 , x�V

uN¯B(R) 4u0 N¯B(R) ,

uN¯B(R(e) ) 4u0 N¯B(R(e) ) ,

uD0 in V , u�W 1, p (V) ,

(23)
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from [24] we get that u0 �C 1, a (V). Since e and R are arbitrary, we obtain the
desired result. r

It is easy to check that all dilations of u0 of the form s
2

N2p

N u0g Q

s
h where

sD0 are also solutions of the minimizing problem (21). Therefore we get a fa-
mily of solutions to problem (19). Moreover we have the following characteri-
zation of minimizers in problem (21).

LEMMA 3.5. – All minimizers of (21) are radial.

PROOF. – Since if u0 � D1, p (RN ) is a minimizer of Sl (i.e K(u0 ) 41 and
Q(u0 ) 4Sl) then the decreasing rearrangement u *0 of u0 given by

u0*(x) 4 inf ]tD0 : N]y�RN : u(y) D t(NGv N NxNN (

where v N denotes the volume of the standard unit N-sphere (see [20]), is also
a minimizer, so it satisfies the same Euler-Lagrange equation i.e

2D p u *0 2l
(u *0 )p21

NxNp
4Sl (u *0 )p *21 .(24)

Notice that by the classical result by Polya-Szegö (see [20]) we obtain
that

s
RN

N˜u0N
p dxF s

RN

N˜u *0 Np dx .

Since u *0 is a solution to (24) we obtain that

s
RN

N˜u *0 Np dx4 s
RN

gl
(u *0 )p

NxNp
1Sl (u *0 )p *h dxF

s
RN

gl
Nu0N

p

NxNp
1Sl Nu0N

p *h dx4 s
RN

N˜u0N
p dx .

Hence we conclude that s
RN

N˜u *0 Np dx4 s
RN

N˜u0N
p dx . Notice that u *0 is strictly

increasing, then N]˜u *0 40(N40. Then from [8], there exists x0 �RN such
that u0 (Q) 4u *0 (Q1x0 ). Since equation (22) is not invariant by translation we
obtain that x0 40 and the result follows. r

3.2 The behavior of the radial solutions.

We study now the asymptotic behavior of all radial solutions of the problem
(19).
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Let u(r) be a radial positive solution of (19), then

(r N21 Nu 8 Np22 u 8 )81r N21gl
u p21

r p
1u p *21h40 .(25)

We set

(26) t4 log r , y(t) 4r d u(r) and z(t) 4r (11d)(p21) Nu 8 (r)Np22 u 8 (r),

where d4
N2p

p
.

Then using the equation (25) we obtain the following system in y and z

.
`
/
`
´

dy

dt
4

N2p

p
y1NzN

22p

p21 z ,

dz

dt
42

N2p

p
z2NyNp *22 y2lNyNp22 y .

(27)

Notice that by a direct calculus we obtain easily that y satisfies the following
nonlinear equation

(28) (p21)Ndy2y 8 Np22 ]dy 82y 9(1

dNdy2y 8Np22 ]dy2y 8(2ly p21 2y p *21 40 .

By the initial equation of u we conclude that r N21 Nu 8 (r)Np22 u 8 (r) is a strictly
decreasing function, then it has a limit as rK0.

Since ˜u�L p (RN ), such a limit must be 0 , hence r N21 Nu 8 (r)Np22 u 8 (r) E

0 and then u 8 (r) E0, which yields zE0.
The stationary points of the system are P1 4 (0 , 0 ) and P2 4 (y0 , z0 )

where

y0 4mg N2p

p
hp

2ln
N2p

p 2

and z0 42g N2p

p
hp21

y0
p21 .

The complete integral of the system is given by

V(y , z) f

1

p *
NyNp * 1

l

p
NyNp 1

p21

p
NzN

p

p21 1
N2p

p
yz .(29)

We set V(t) 4V(y(t), z(t) ). Since
¯V(t)

¯t
40 for all t�R , we get that

V(t) 4V(y(t), z(t) ) 4K0(30)

for some real constant K0 .
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LEMMA 3.6. – y and z are bounded.

PROOF. – By Young inequality, (29), and (30), we obtain that

1

p *
NyNp * 1

l

p
NyNp 2

NdyNp

p
GK0 ,

from which we can conclude that y is bounded in R . Again by Young inequality
we have that for any eD0 there exists Ce such that

Ny(t) z(t)NGeNz(t)N
p

p21 1Ce Ny(t)Np .

Hence from (30) and (29) we have

K0 F
p21

p
Nz(t)N

p

p21 2deNz(t)N
p

p21 2dCe Ny(t)Np .

Therefore, taking e small enough, from the boundedness of y(t) we deduce
that z is also bounded. r

The following lemma states that K0 40.

LEMMA 3.7. – For any t�RN

(y(t), z(t) ) � ](y , z) �R2 : V(y , z) 40( .

PROOF. – Let us define the following even function

f(s) 4K0 1
d p 2l

p
NsNp 2

1

p *
NsNp * .(31)

It is easy to obtain that f is strictly increasing in [0 , s0 ] and strictly decrea-

sing in [s0 , Q) where s0 4 (d p2l)d and f(s0 ) 4K0 1K1 where K1 4
1

N
(d p 2

l)N/p . Since f(y(t) ) F0 we obtain that K0 F2K1 . We have four cases

1. K0 42K1 ;

2. 2K1 EK0 E0;

3. K0 D0;

4. K0 40.

In the first case the maximum of f is zero but since f(y(t) ) F0 we obtain

that y(t) 4s0 and u(r) 4
s0

r d
� D1, p (RN ). In the second case, i.e. 2K1 EK0 E0,

let s1 be the first zero of f , then s1 is strictly positive and y(t) Fs1 for all t�R ,
hence u� D1, p (RN ). In order to exclude the third case let us observe that if
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K0 D0, then f vanishes only at a positive value b . If t is a critical point of y , i.e.
y 8 (t) 40, then from (27) and the negativity of z , we obtain that

dy(t) 4Nz(t)N
1

p21 .(32)

From (29), (30), and (32), it follows that f(y(t) ) 40. Hence y(t) 4b . Hence all
the stationary points of y must stay on the same level bD0. From this fact and
the integrability condition on u , it follows that y must be strictly increasing for
tG2R for some large RD0. In particular there exists lim

tK2Q
y(t) and by inte-

grability of u such limit must be 0 . Since y(t) K0 as tK2Q and z(t) is boun-
ded, from (29) and (30), we deduce that there exists l 4 lim

tK2Q
z(t) and

K0 4
p21

p
N l N

p

p21 .

On the other hand from the second equation in (27), we infer that l must be 0 ,
which is not possible if K0 D0. Hence the only possible case is case 4, i.e. K0 4

0. The conclusion follows from K0 40 and (30). r

LEMMA 3.8. – There exists t0 �R such that y(t) is strictly increasing for tE

t0 and strictly decreasing for tD t0 . Moreover

max
t�RN

y(t) 4y(t0 ) 4 k N

N2p
(d p 2l)l1/(p *2p)

.(33)

PROOF. – In view of the integrability condition on u and since y is a strictly
positive function, to conclude it is enough to show that y has only one critical
point. Arguing as above, it is possible to show that if y 8 (t) 40 then f(y(t) ) 40,
where the function f is defined in (31). Since K0 40, f has only two zeros,
which are s40 and s4b , where

b4 k N

N2p
(d p 2l)l1/(p *2p)

.

Since y is strictly positive, we deduce that y(t) 4b . Hence all the critical points
of y must stay on the same level bD0. As a consequence, if y has two distinct
critical points t1 E t2 , it must be y(t) 4b for any t1 G tG t2 , hence y 8 (t) 40 for
all t� [t1 , t2 ]. Therefore, using (27) we conclude that z(t) 42(db)p21 for all t�
[t1 , t2 ] and then z 8 (t) 40 for all t� (t1 , t2 ). Now in view of Lemma 3.7 and from

(27) we obtain that z 8 (t) 42
p *2p

p *
y p *21 (t) E0 for all t� (t1 , t2 ) a contradic-

tion with the fact that z 8 (t) 40 in (t1 , t2 ).
Hence we conclude that y has only a critical point t0 , which must be a global
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maximum point in view of the integrability of u and the positivity of y . Moreo-
ver max

RN
y4y(t0 ) 4b . r

Since the system (27) is autonomous, then modulo translation we can assu-
me that t0 40. Using (28) we get

Ndy2y 8 Np22 ]dy2y 8( 4e2dt s
2Q

t

eds (ly p21 (s)1y p *21 (s) ) ds .(34)

Hence we conclude that dy2y 8D0. The following result gives the exact
behavior of y as tK6Q .

LEMMA 3.9. – Suppose that y is a positive solution of (28) such that y is in-
creasing in (2Q , 0 ) and decreasing in (0 , Q), then there exist positive con-
stants c1 , c2 , such that

lim
tK2Q

e(l12d) t y(t) 4y(0) c1 D0(35)

lim
tKQ

e(l22d) t y(t) 4y(0)c2 D0(36)

where l1 , l2 are the zeros of the function j(s) 4 (p21) s p 2 (N2p) s p21 1l
such that 0 E l1 E l2 .

PROOF. – It is easy to see that l1 EdE l2 . Let us now prove (35). Using (27)
we obtain that

d

dt
(e2(d2 l1 ) t y(t)) 4e2(d2 l1 ) t y(t)ul1 2

Nz(t)N
1

p21

y(t)
v .

Therefore we get

e2(d2 l1 ) t y(t) 4y(0) e2st
0 (l12y(s)21 Nz(s)N1/(p21) )ds .(37)

We set H(s) 4
Nz(s)N

1

p21

y(s)
. We claim that

H is an increasing function from (2Q , 0 ] to (l1 , d] .(38)

To prove the claim, we first show that H 8 (s) D0 for all sE0. Indeed, assume
by contradiction that there exists s0 E0 such that H 8 (s0 ) G0. Since

H 8 (s) 4

2
1

p21
y(s)z 8 (s)Nz(s)N

22p

p21 2Nz(s)N
1

p21 y 8 (s)

y 2 (s)

from H 8 (s0 ) G0, (27), and (29), it follows that g 1

p
2

1

p *
h y p * (s0 ) G0 which
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yields a contradiction with the positivity of y . Therefore H 8D0 and then H is
a strictly increasing function. Using (27) and the fact that y 8 (0) 40, we find
that H(0) 4 (N2p) /p . From (29) we conclude that lim

sK2Q
H(s) 4 l1 . The claim

is thereby proved.
From (37) and (38) we conclude that e2(d2 l1 ) t y(t) is a decreasing function,

therefore there exists lim
tK2Q

e2(d2 l1 ) t y(t) and

af lim
tK2Q

e2(d2 l1 ) t y(t) 4y(0) e2s2Q
0 (H(s)2 l1 ) ds D0 .

Hence to prove (35) it is enough to show that aE1Q . To this aim let us note
that from a direct computation

H 8 (s) 42
p

(p21)(N2p)
H(s)22p j(H(s) )

where j is given by j(s) 4 (p21) s p 2 (N2p) s p21 1l . Thus performing the
change of variable s4H(s), we have ds4H 8 (s)dsfr(s) ds where r(s) 42

p

(p21)(N2p)
s 22p j(s). We can write r(s) 4 (s2 l1 )(s2 l2 ) g(s) where g is a

negative function such that Ng(s)NFconstD0 for s� [l1 , (N2p) /p]. Therefo-
re we obtain

a4 lim
tK2Q

e2(d2 l1 ) t y(t) 4y(0) e2s2Q
0 (H(s)2 l1 ) ds 4y(0) e2sl1

d [ (s2 l2 )g(s) ]21 ds .

Since l2 Dd and Ng(s)NFc1 if s� [l1 , (N2p) /p], we conclude that

s
l1

d 1

(s2 l2 ) g(s)
dsE1Q , hence aE1Q . The proof of (36) can be done obser-

ving that lim
t 1Q

H(t) 4 l2 and using the same argument. r

In the following corollary we translate the results above to energy sol-
utions u of equation (25), namely to radial solutions of (19) in the energy space
D1, p (RN ).

COROLLARY 3.10. – Let u be a positive energy solution to (25), then there
exist positive constants C1 and C2 such that

lim
rK0

r l1 u(r) 4C1 D0 ,(39)

lim
rKQ

r l2 u(r) 4C2 D0(40)

and

lim
rK0

r l111 Nu 8 (r)N4C1 l1 D0 and lim
rK1Q

r l211 Nu 8 (r)N4C2 l2 D0 .(41)
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PROOF. – (39) and (40) follow from (35), (36), and (26), while (41) follows
from (26) and the fact that lim

tK2Q
H(t) 4 l1 and lim

tK1Q
H(t) 4 l2 . r

Notice that since lim
sK2Q

H(s) 4 l1 and lim
tK2Q

e(l12d) t y(t) 4y(0) c1 , we obtain
that

lim
tK2Q

e(l12d) t Nz(t)N
1

p21 4c1 y(0) l1 D0 ,(42)

and since lim
sK1Q

H(s) 4 l2

lim
tK1Q

e(l22d) t Nz(t)N
1

p21 4c2 y(0) l2 D0 .(43)

The uniqueness in the case of bounded solutions to quasilinear equations could
be seen in [10]. We state and prove now the uniqueness result for energy posi-
tive solutions to problem (25), that requires a different approach based on the
previous analysis.

THEOREM 3.11. – Let u1 (r) and u2 (r) be two positive energy solutions to
equation (19). Let us denote by (y1 (t), z1 (t) ) and (y2 (t), z2 (t) ) the solutions to
system (27) corresponding to u1 and u2 respectively. Assume that

max
t� (2Q , Q)

y1 (t) 4y1 (0) 4g N

N2p
h

1

p *2p

(d p 2l)
1

p *2p .

If y2 (0) 4y1 (0), then (y1 (t), z1 (t) ) 4 (y2 (t), z2 (t) ) and hence u1 4u2 .

Before proving the above uniqueness result, we state the main consequen-
ce of Theorem 3.11.

THEOREM 3.12. – Let u1 (r) be the fixed energy solution to (19) such that, if
(y1 (t), z1 (t) ) is the solution to system (27) corresponding to u1 , then

max
t� (2Q , Q)

y1 (t) 4y(0) 4g N

N2p
h

1

p *2p

(d p 2l)
1

p *2p .

Then for any other solution v there exists m 0 D0 such that v(r) 4

m2(N2p) /p
0 u1 (r/m 0 ).

PROOF. – Let (y2 (t), z2 (t) ) be the solution to system (27) corresponding to
v . From Lemma 3.8, there exists t0 � (2Q , Q) such that

max
t� (2Q , Q)

y2 (t) 4y(t0 ) 4g N

N2p
h

1

p *2p

(d p 2l)
1

p *2p .
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We set y2 (t) 4y(t2 t0 ) and z2 (t) 4z2 (t2 t0 ). Notice that

max
t� (2Q , Q)

y2 (t) 4 y2 (0) 4g N

N2p
h

1

p *2p

(d p 2l)
1

p *2p .

Using the fact that the system (27) is autonomous we obtain that (y2 , z2 ) is also
a solution to (27). Since y2 (0) 4y1 (0), from Theorem 3.11 we obtain that
(y2 (t), z2 (t) ) 4 (y1 (t), z1 (t) ). Hence from (26) we conclude that

u1 (r) 4
1

edt0
vg r

et0
h .

Therefore we conclude that v(r) 4m 0
2d u1 (r/m 0 ) where m4e2t0 . r

PROOF OF THEOREM 3.11. – Let u1 , u2 be two solutions to problem (19) and
let (y1 (t), z1 (t) ), (y2 (t), z2 (t) ) be the solutions to system (27) corresponding to
u1 and u2 respectively such that

max
t� (2Q , Q)

y1 (t) 4y1 (0) 4g N

N2p
h

1

p *2p

(d p 2l)
1

p *2p .

Assume that y2 (0) 4y1 (0). From Lemma 3.8 we know that y2 has a unique
maximum point t0 at which y2 (t0 ) 4 (N(d p 2l) /(N2p))1/(p *2p) . Since y2 (0) 4

y1 (0) 4 (N(d p 2l) /(N2p))1/(p *2p) we conclude that t0 40. Hence y28 (0) 40.
From (27) we get

e2dt y(t) 4y(0)2s
0

t

e2ds Nz(s)N
1

p21 ds .

Hence we obtain that

Ny1 (t)2y2 (t)NGedts
0

t

e2dsNNz1 (s)N
1

p21 2Nz2 (s)N
1

p21 Nds .

Since from (27) we have that z1 (0) 4z2 (0) 42(dy1 (0) )p21 , we get the exi-
stence of s 1 D0 such that for all s� [0 , s 1 ] we have

NNz1 (s)N
1

p21 2Nz2 (s)N
1

p21 N GC(s 1 )Nz1 (s)2z2 (s)N .

Therefore we conclude that

Ny1 (t)2y2 (t)NGedt C(s 1 )s
0

t

e2ds Nz1 (s)2z2 (s)Nds .
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Now from (27) we obtain that

eds zi (s) 4z1 (0)2s
0

s

eds [ly p21
i (s)1y p *21

i (s) ] ds .

Hence

Nz1 (s)2z2 (s)NGle2dss
0

s

eds Ny1
p21 (s)2y2

p21 (s)Nds1

e2dss
0

s

eds Ny1
p *21 (s)2y2

p *21 (s)Nds .

As above, we can prove the existence of s1 D0 such that for s� [0 , s1 ] we
have

Ny1
p21 (s)2y2

p21 (s)NGC1 (s1 )Ny1 (s)2y2 (s)N

and

Ny1
p *21 (s)2y2

p *21 (s)NGC2 (s1 )Ny1 (s)2y2 (s)N .

Hence

Nz1 (s)2z2 (s)NG CA(s1 )(l11) e2dss
0

s

eds Ny1 (s)2y2 (s)Nds .

Therefore, if 0 G tG min ]s 1 , s1 ( we obtain that

Ny1 (t)2y2 (t)NGedt Cs
0

t

e22ds{ s
0

s

eds Ny1 (s)2y2 (s)Nds} ds

where C4C(s 1 ) CA(s1 )(l11), and hence

Ny1 (t)2y2 (t)NGCedts
0

t

eds Ny1 (s)2y2 (s)N{ s
s

t

e22ds ds} ds .

Consequently we obtain

e2dt Ny1 (t)2y2 (t)NGC2s
0

t

e2ds Ny1 (s)2y2 (s)Nds .

Therefore, using Gronwall Lemma we conclude that y1 (t) 4y2 (t) for t�
[0 , min ]s 1 , s1 (] and then u1 (r) 4u2 (r) in [1 , r0 ] where r0 D1. To prove the
identity for all rF0 it is enough to iterate the above argument. r

We can resume in the next statement the main results obtained in this
section.
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THEOREM 3.13. – All positive radial solutions of (19) are

u(Q) 4s
2

N2p

p u0g Q

s
h

where u0 is the unique solution of (19) such that u0 (1) 4y(0) 4

g N

N2p
h

1

p *2p

(d p 2l)
1

p *2p . Moreover there exist constants C1 , C2 D0 such

that

0 EC1 G
u0 (x)

(NxNl1 /d1NxNl2 /d)2d
GC2 .

4. – Existence result for perturbed problems.

4.1. Perturbation in the linear term.

In this section we will prove some existence and nonexistence results in the
case q4p21, extending to the p-laplacian operator the analogous results ob-
tained in [1] for p42. Let us start by considering the case of a perturbed coef-
ficient of the Hardy-type potential, i.e. we deal with the following pro-
blem

.
/
´

2D p u4
l1h(x)

NxNp
u p21 1u p *21 , x�RN ,

uD0 in RN , and u� D1, p (RN ) ,

(44)

where NF3 and p *4
pN

N2p
. Hypotheses on h will be given below.

4.2. Nonexistence results.

The following nonexistence results show how in this kind of problems both
the size and the shape of the perturbation are important. We set

.
`
/
`
´

Q(u) 4 s
RN

N˜uNp dx2s
RN

l1h(x)

NxNp
NuNp dx ,

K 4{u� D1, p (RN ) Ns
RN

NuNp * dx41} ,

(45)

and consider I1 4 inf
u� K

Q(u).

LEMMA 4.1. – Problem (44) has no positive solution in each one of the follo-
wing cases:
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(1) if l1h(x) F0 in some ball Bd (0) and I1 E0;

(2) if h is a differentiable function such that ah 8 (x), xb has a fixed
sign.

PROOF. – Let us first prove nonexistence under hypothesis (1). Suppose
that I1 E0 and let u be a positive solution to (44). By classical regularity resul-
ts for elliptic equations we obtain that u� C1, a (RN 0]0(). On the other hand,
since l1h(x) F0 in Bd (0), we obtain that 2D p uF0 in the distributional sen-
se in the ball Bd (0). Therefore, as uF0 and uc0, by the strong maximum
principle we obtain that u(x) FcD0 in some ball Bd

A (0) %%Bd (0).
Let f n �C Q

0 (RN ), f n F0, Vf n Vp * 41, be a minimizing sequence of I1 .
Using Theorem 2.1 we obtain that

s
RN

N˜f nNp dxF s
RN

2D p u

u p21
Nf nNp dx .

Hence

s
RN

N˜f nNp dxF s
RN

l1h(x)

NxNp
f p

n 1s
RN

f n
p u p *2p .

On the other hand, I1 E0 implies that there exists an integer n0 such that if
nFn0

s
RN

N˜f n Np 2s
RN

l1h(x)

NxNp
f p

n E0 .

As a consequence s
RN

f n
p u p *2p E0 for nFn0 , which is a contradiction with the

hypothesis uD0.
Let us now prove (2). Testing the equation with the Pohozaev multiplier,

we obtain that any positive solution u to (44) satisfies the following identi-
ty

s
RN

ah 8 (x), xb

NxNp
NuNp dx40 ,

which is not possible if ah 8 (x), xb has a fixed sign and ug0. r

COROLLARY 4.2. – Assume either

i) lDL N , p and hF0, or

ii) lDL N , p and 1 G
l

L N , p VhVQ

,

then problem (44) has no positive solution.
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4.3. The local Palais-Smale condition: existence results.

Existence results will be obtained through a variational approach. More
precisely we look for critical points of the associated functional

J(u) 4
1

p
s

RN

N˜uNp dx2
1

p
s

RN

l1h(x)

NxNp
NuNp dx2

1

p *
s

RN

NuNp * dx .(46)

We suppose that h verifies the following hypotheses

(h 0) l1h(0) D0,

(h 1) h�C(RN )OL Q (RN ),

(h 2) for some c0 D0, l1VhVQGL N , p 2c0 .

Solutions to equation (44) can be found as critical points of J in D1, p (RN ).
The following theorem yields a local Palais-Smale condition for J .

THEOREM 4.3. – Suppose that h satisfies (h0), (h1), and (h2) and denote
h(Q) f lim sup

NxNKQ

h(x). Let ]un (n�N% D1, p (RN ) be a Palais-Smale sequence for

J , namely

J(un ) KcEQ and J 8 (un ) K0 .

If

cEc *4
1

N
min ]S N/p

(l1h(0) ) , S N/p
(l1h(Q) )(

where S N/p
(l1h(0) ) and S N/p

(l1h(Q) ) are defined in (21), then ]un (n�N has a conver-
gent subsequence.

PROOF. – Let ]un (n be a Palais-Smale sequence for J , then according to
(h1)2 (h2), ]un (n is bounded in D1, p (RN ). Therefore, up to a subsequence,
un � u0 in D1, p (RN ), un Ku0 a.e., and un Ku0 in L a

loc (RN ), a� [1 , p *). Hence,
by the Concentration Compactness Principle by P. L. Lions (see [15] and
[16]), there exists a subsequence still denoted by ]un (n and an at most counta-
ble set J such that

1. N˜unNp � dmFN˜u0N
p 1 !

j� J

m j d xj
1m 0 d 0 ,

2 NunNp * � dn4Nu0N
p * 1 !

j� J

n j d xj
1n 0 d 0 ,

3. Sn j

p

p * Gm j for all j� J N]0(,

4.
un

p

NxNp
� dg4

u0
p

NxNp
1g 0 d 0 ,

5. L N g 0 Gm 0 .
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To study the concentration at infinity of the sequence, we also need to in-
troduce the following quantities

n Q4 lim
RKQ

lim sup
nKQ

s
NxNDR

NunNp * dx , m Q4 lim
RKQ

lim sup
nKQ

s
NxNDR

N˜unNp dx

and

g Q4 lim
RKQ

lim sup
nKQ

s
NxNDR

NunNp

NxNp
dx .

We claim that J is finite and that for any j� J either n j 40 or n j FS N/2 . We fol-
low closely the arguments in [6] (see also [1]). Let eD0 and let f be a smooth
cut-off function centered at xj such that 0 Gf(x) G1,

f(x) 4
.
/
´

1, if Nx2xjNGe/2 ,

0 , if Nx2xjNFe ,

and N˜fNG4/e . Testing J 8 (un ) with un f we have

04 lim
nKQ

aJ 8(un), unfb

4 lim
nKQ

u s
RN

N˜unNpf1s
RN

unN˜unNp22˜un˜f2s
RN

l1h(x)

NxNp
NunNpf2s

RN

fNunNp *v .

From 1), 2) and 4) and since 0 �supp (f) we find that

lim
nKQ s

RN

N˜unNp f4 s
RN

f dm , lim
nKQ s

RN

NunNp * f4 s
RN

f dn ,

and

lim
nKQ s

Be (xj )

l1h(x)

NxNp
NunNp f4 s

Be (xj )

l1h(x)

NxNp
Nu0N

p f .

Taking limits as eK0 we obtain

lim
eK0

lim
nKQ s

RN

NunNN˜unNp21 N˜fNK0 .

Hence

0 4 lim
eK0

lim
nKQ

aJ 8 (un ), un fb Fm j 2n j .
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By 3) we have that Sn j

p

p * Gm j , then we obtain that either n j 40 or n j FS N/p ,
which implies that J is finite. The claim is proved.

Let us now study the possibility of concentration at x40 and at Q . Let c
be a regular function such that 0 Gc(x) G1,

c(x) 4
.
/
´

1, if NxNDR11

0, if NxNER ,

and N˜cNG4/R . From (21) we obtain that

s
RN

N˜(un c)Np dx2 (l1h(Q) ) s
RN

NcunNp

NxNp
dx

g s
RN

NcunNp *hp/p *
FS(l1h(Q) ) .(47)

Hence

s
RN

N˜(un c)Np dx2 (l1h(Q) ) s
RN

NcunNp

NxNp
dxFS(l1h(Q) )u s

RN

NcunNp *vp/p *

.

Therefore we conclude that

(48) s
RN

Nc˜un 1un ˜cNp dxF

(l1h(Q) ) s
RN

NcunNp

NxNp
dx1S(l1h(Q) )u s

RN

NcunNp *vp/p *

.

We claim that

lim
RKQ

lim sup
nKQ

{ s
RN

Nc˜un 1un ˜cNp dx2s
RN

c p N˜unNp dx}40 .(49)

Indeed from the following elementary inequality

NNX1YNp 2NXNpNGC(NXNp21 NYN1NYNp ) for all X , Y�RN ,

it follows that

s
RN

NNc˜un1un ˜cNp2c p N˜unNp NdxGCs
RN

(Nc˜unNp21 Nun ˜cN1Nun ˜cNp ) dx .
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From Hölder inequality we obtain

s
RN

NunNNc˜unNp21 N˜cNdxG

g s
RENxNER11

NunNp N˜cNp dxh
1

p g s
RENxNER11

N˜unNp dxh
p21

p

.

Hence

lim sup
nKQ

s
RN

NunNc p21 N˜unNp21 N˜cNdx

GCg s
RENxNER11

Nu0N
p N˜cNp dxh

1

p

GCg s
RENxNER11

Nu0N
p * dxh

p

p * g s
RENxNER11

N˜cNN dxh
p

N

GCg s
RENxNER11

Nu0N
p * dxhp/p *

.

Therefore we conclude that

lim
RKQ

lim sup
nKQ

s
RN

NunNc p21 N˜unNp21 N˜cNdxG

C lim
RKQ

g s
RENxNER11

Nu0N
p * dxhp/p *

40 .

Using the same argument we can prove that

lim
RKQ

lim sup
nKQ

s
RN

NunNp N˜cNp dx40 .

The claim is thereby proved. From (48) and (49), we deduce that

m Q2 (l1h(Q) ) g QFS(l1h(Q) ) n Q
p/p * .(50)

Since lim
RKQ

lim
nKQ

aJ 8 (un ), un cb 40, we obtain that m Q2 (l1h(Q) ) g QGn Q .

Therefore we conclude that either n Q40 or n QFS
N

p
(l1h(Q) ) . The same holds

for the concentration at x0 40, namely that either

n 0 40 or n 0 FS
N

p
(l1h(0) ) .
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As a conclusion we obtain

c4

4

J(un )2
1

p
aJ 8 (un ), un b1o(1)

1

N
s

RN

NunNp * dx1o(1) 4
1

N
{ s

RN

Nu0N
p * dx1n 0 1n Q1!

j� J

n j} .

If we assume the existence of j� J N]0, Q( such that n j c0, then we obtain
that cFc *, a contradiction with the hypothesis. Hence, up to a subsequence,
un Ku0 in D1, p (RN ). r

To find solutions through the Mountain Pass Theorem, we need to find so-
me path in D1, p (RN ) along which the maximum of J(g(t) ) is strictly below c *.
To this aim, we set H4 max ]h(0), h(Q)( and consider ]wm( the one par-
ameter family of minimizers to problem (21) where l is replaced by l1H . The
following theorem provides a sufficient condition for the minimax level to stay
below the critical threshold c *.

THEOREM 4.4. – Suppose that (h1) and (h2) hold. Assume the existence of
m 0 D0 such that

s
RN

h(x)
w p

m 0
(x)

NxNp
dxDHs

RN

w p
m 0

(x)

NxNp
dx ,(51)

then (44) has at least a positive solution.

PROOF. – Let m 0 be as in the hypothesis, then if we set

f (t) 4J(twm 0
) 4

t p

p
u s

RN

N˜wm 0
Np dx2s

RN

l1h(x)

NxNp
wm 0

p dxv2
t p *

p *
s

RN

Nwm 0
Np * dx , tF0

we can see easily that f achieves its maximum at some t0 D0 and that there
exists some rD0 such that J(twm 0

) E0 if Vtwm 0
VFr . A simple calculation

yields

t0 4y s
RN

N˜wm 0
Np dx2s

RN

l1h(x)

NxNp
w p

m 0
dx

s
RN

Nwm 0
Np * dx

z(N2p) /p 2
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and

J(t0 wm 0
) 4 max

tF0
J(twm 0

) 4
1

N y s
RN

N˜wm 0
Np dx2s

RN

l1h(x)

NxNp
wm 0

p dx

g s
RN

Nwm 0
Np * dxhp/p * zN/p

.

Using (51) we obtain that

J(t0 wm 0
) E

1

N y s
RN

N˜wm 0
Np dx2 (l1H) s

RN

wm 0
p

NxNp
dx

g s
RN

Nwm 0
Np * dxhp/p * zN/p

4
1

N
S

N

p
(l1H) Gc *.

We set

G4 ]g�C( [0 , 1 ], D1, p (RN ) ) : g(0) 40 and J(g(1) ) E0( .

Let

c4 inf
g�G

max
t� [0 , 1 ]

J(g(t) ) .

Since J(t0 wm 0
) Ec *, then we get a mountain pass critical point u0 . Then we ha-

ve just to prove that we can choose u0 F0. Consider the Nehari manifold

Mf ]u� D1, p (RN ) : uc0 and aJ 8 (u), ub 40(

4{u�D1, p (RN ) : uc0 and s
RN

N˜uNp dx4s
RN

l1h(x)

NxNp
NuNp dx1s

RN

NuNp * dx} .

Notice that u0 , Nu0N�M . Since u0 is a mountain pass solution to problem (44),
then one can prove easily that cfJ(u0 ) 4 min

u�M
J(u) (see [27]). Hence

J(Nu0 N) 4 min
u�M

J(u) and then Nu0N is a critical point of J . Therefore by using

the strong maximum principle by J. L. Vázquez, see [26], we conclude that
u0 D0. r

REMARK 4.5. – It is immediate to see that hypothesis (51) is satisfied for
example in the case in which h(0) 4h(Q) 4 min

x�RN
h(x) and hgconst .
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4.4. Perturbation in the nonlinear term.

In this section we deal with problem (19) with a perturbed coefficient of the
nonlinear term, namely we study the following problem

.
/
´

2D p u4
l

NxNp
u p21 1k(x)u p *21 , x�RN ,

uD0 in RN , and u� D1, p (RN ) ,

(52)

where NF3, 0 ElEL N , p and k is a positive function.

4.5. Existence.

Assume that k verifies the following hypothesis

k�L Q (RN )OC(RN ) and VkVQD max ]k(0), k(Q)( ,(K0)

where k(Q) f lim sup
NxNKQ

k(x). Let

Jl (u) 4
1

p
s

RN

N˜uNp dx2
l

p
s

RN

NuNp

NxNp
dx2

1

p *
s

RN

k(x)NuNp * dx ,

then critical points of Jl are solutions to equation (52). Arguing as in Subsec-
tion 4.3, we can prove that Palais-Smale condition is satisfied below some level
as stated in the following lemma.

LEMMA 4.6. – Let ]un (n�N% D1, p (RN ) be a Palais-Smale sequence for Jl ,
namely

Jl (un ) KcEQ and J 8l (un ) K0 .

If

cE cA(l) 4
1

N
min mS

N

p
VkVQ

2
N2p

p , S
N

p
l (k(0) )

2
N2p

p , S
N

p
l (k(Q) )

2
N2p

p n

then ]un (n�N has a converging subsequence.

Since the proof is similar to the proof of Theorem 4.3, we omit it. If k is a ra-
dial positive function, we can prove the following improved Palais-Smale con-
dition.

LEMMA 4.7. – Define

cA1 (l) 4
1

N
S

N

p
l min m(k(0) )

2
N2p

p , (k(Q) )
2

N2p

p n .



BOUMEDIENE ABDELLAOUI - VERONICA FELLI - IRENEO PERAL476

If ]un (n�N% D1, p (RN ) is a Palais-Smale sequence for Jl , namely Jl (un ) Kc ,
J 8l (un ) K0, and cE cA1 , then ]un (n�N has a converging subsequence.

We define

b(l) f

.
/
´

1Q

1

N
Sl

N/p min mk(0)
2

N2p

p , k(Q)
2

N2p

p n
if k(0) 4k(Q) 40

otherwise .

LEMMA 4.8. – If (K0) holds, there exists e 0 D0 such that
1

N
S N/p

VkVQ
2(N2p) /p Gb(l) for all lGe 0 and

cA(l) 4 cA f

1

N
S N/p

VkVQ
2

N2p

p(53)

for any 0 ElGe 0 .

PROOF. – From (K0) and by the fact that SlKS as lK0, it follows that if l

is sufficiently small then
1

N
S N/p

VkVQ
2

N2p

p Gb(l) and hence the result follo-
ws. r

As a consequence we obtain the following existence result.

THEOREM 4.9. – Let k be a positive function such that (K0) is satisfied. As-
sume that there exists m 0 D0 such that

s
RN

k(x) w p *
m 0

(x) dxD max ]k(0), k(Q)( s
RN

w p *
m 0

(x) dx ,(54)

where wm 0
is a solution to problem

.
/
´

2D p w4
l

NxNp
w p21 1w p *21 , x�RN ,

wD0 in RN , and w� D1, p (RN ) .

Then (52) has at least a positive solution.

PROOF. – Since the proof is similar to the proof of Theorem 4.4 we omit
it. r
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5. – Multiplicity of positive solutions.

To find multiplicity results for problem (52) we need the following extra
hypotheses on k

(K1) the set C(k) 4ma�RN Nk(a) 4 max
x�RN

k(x)n is finite, say C(k) 4

]aj N1 G jGCard (C(k) )(;

(K2) there exists u� gp ,
N

p21
h such that if aj � C(k) then k(aj )2k(x) 4

o(Nx2aj N)u as xKaj .

Consider 0 Er0 b1 such that Br0
(aj )OBr0

(ai ) 4¯ for ic j , 1 G i ,

jGCard (C(k) ). Let d4
r0

3
and for any 1 G jGCard (C(k) ) define the following

function

Tj (u) 4

s
RN

c j (x)N˜uNp dx

s
RN

N˜uNp dx
where c j (x) 4 min ]1, Nx2ajN( .(55)

For the proof of the following separation lemma we refer to [1].

LEMMA 5.1. – Let u� D1, p (RN ), ug0, such that Ti (u) Gd and Tj (u) Gd ,
then i4 j .

Consider now the Nehari manifold,

M(l) 4 ]u� D1, p (RN ) : ug0 and aJ 8l (u), ub 40( ,(56)

namely u�M(l) if and only if ug0 and

s
RN

N˜uNp dx2ls
RN

NuNp

NxNp
dx4 s

RN

k(x)NuNp * dx .

Notice that for all u� D1, p (RN ) such that ug0, there exists tD0 with tu�
M(l) and for all u�M(l) we have

s
RN

N˜uNp dx2ls
RN

NuNp

NxNp
dxE

p *21

p21
s

RN

k(x)NuNp * dx .(57)

Therefore we can prove easily the existence of c1 D0 such that

(u�M(l), VuVD1, p (RN ) Fc1 .
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DEFINITION 5.2. – For any 0 ElEL N and 1 G jGCard (C(k) ), let us
consider

Mj (l) 4

]u�M(l) : Tj (u) Ed( and its boundary G j (l) 4 ]u�M(l) : Tj (u) 4d( .

We define

mj (l) 4 inf ]Jl (u) : u�Mj (l)( and h j (l) 4 inf ]Jl (u) : u�G j (l)( .

The following two lemmas give the behaviour of the functional with respect to
the critical level cA. The proofs can be obtained with a small modification of the
arguments used in [1].

LEMMA 5.3. – Suppose that (K0), (K1), and (K2) hold, then Mj (l) c¯ and
there exists e 1 D0 such that

mj (l) E cA for all 0 ElGe 1 and 1 G jGCard (C(k) ) .(58)

LEMMA 5.4. – Suppose that (K0), (K1), and (K2) are satisfied, then there
exists e 2 such that for all 0 ElEe 2 there holds

cA Eh j (l) .

We need now the following lemma that is suggested by the work of Tarantello
[23]. See also [9].

LEMMA 5.5. – Assume that lE min ]e 1 , e 2 ( where e 1 , e 2 are given by Lem-
mas 5.3 and 5.4. Then for all u�Mj (l) there exists r u D0 and a differentiable
function

f : B(0 , r u ) % D1, p (RN ) KR

such that f (0) 41 and for all w�B(0 , r u ) there holds f (w)(u2w) �Mj (l).
Moreover for all v� D1, p (RN ) we have

(59) a f 8 (0), vb 4

2

ps
RN

N˜uNp22 ˜u˜vdx2pls
RN

NuNp22 uv

NxNp
dx2p *s

RN

k(x)NuN2*22 uvdx

(p21) y s
RN

N˜uNp dx2ls
RN

NuNp

NxNp
dxz2 (p *21) s

RN

k(x)NuNp * dx

.
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PROOF. – Let u�Mj (l) and let G : R3 D1, p (RN ) KR be the function defi-
ned by

G(t , w) 4

t p21u s
RN

N˜(u2w)Np dx2ls
RN

Nu2wNp

NxNp
dxv2 t p *21 s

RN

k(x)Nu2wNp * dx .

Then G(1 , 0 ) 40 and

Gt (1 , 0 ) 4 (p21)y s
RN

N˜uNp dx2ls
RN

NuNp

NxNp
dxz2 (p *21) s

RN

k(x)NuNp * dxc0

in view of (57). Then by using the Implicit Function Theorem we get the exi-
stence of r u D0 small enough and of a differentiable function f : B(0 , r u ) %
D1, p (RN ) KR such that f (0) 41 and G( f (w), w) 40 for all w�B(0 , r u ),
which implies that f (w)(u2w) �Mj (l). Moreover, we have

a f 8(0), vb4

4

2
aGw (1, 0), vb

Gt (1, 0)

2

ps
RN

N˜uNp22˜u˜vdx2pls
RN

NuNp22uv

NxNp
dx2p *s

RN

k(x)NuNp *22uvdx

(p21) y s
RN

N˜uNpdx2ls
RN

NuNp

NxNp
dxz2(p *21)s

RN

k(x)NuNp *dx

.

The proof is thereby complete. r

We are now in position to prove the main result of this section.

THEOREM 5.6. – Assume that (K0), (K1), and (K2) hold, then there exists e 3

small such that for all 0 ElEe 3 equation (52) has Card (C(k) ) positive sol-
utions uj , l such that

(60) N˜uj , lN
p KS N/p

VkVQ
2(N2p)/p d aj

and Nuj , lN
p * KS N/p

VkVQ
2N/p d aj as lK0 .

PROOF. – Assume that 0 ElEe 3 4 min ]e 0 , e 1 , e 2 (, where e 0 , e 1 and e 2

are given by the Lemmas 4.8, 5.3 and 5.4. Let ]un (n�N be a minimizing se-
quence for Jl in Mj (l), i.e. un �Mj (l) and Jl (un ) Kmj (l) as nKQ . Since
Jl (un ) 4Jl (NunN), we can choose un F0. It is not difficult to prove the existen-
ce of c1 , c2 such that c1 GVun VD1, p (RN ) Gc2 . By the Ekeland variational principle
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we get the existence of a subsequence denoted also by ]un ( such that

Jl (un ) Gmj (l)1
1

n
and Jl (w) FJl (un )2

1

n
Vw2un V for all w�Mj (l) .

Let 0 ErEr n fr un
and fn f fun

, where r un
and fun

are given by Lemma 5.5.
We set vr4rv where VvVD1, p (RN ) 41, then vr�B(0 , r n ) and we can apply Lem-
ma 5.5 to obtain that wr4 fn (vr )(un 2vr ) �Mj (l). Therefore we get

1

n
Vwr2un VFJl (un )2Jl (wr ) 4 aJ 8l (un ), un 2wr b1o(Vun 2wr V)

Frfn (rv)aJ 8l (un ), vb1o(Vun 2wr V).

Hence we conclude that

aJ 8l (un ), vb G
1

n

Vwr2un V

rfn (rv)
(11o(1) ) .

Since Nfn (rv)NKNfn (0)NFc as rK0 and

Vwr2un V

r
4

G

V fn (0)un 2 fn (rv)(un 2rv)V

r

Vun VNfn (0)2 fn (rv)N1NrNNfn (rv)N

r
GCNf 8n (0)NVvV1c3 Gc .

Therefore we conclude that J 8l (un ) K0 as nKQ . Hence ]un ( is a Palais-Sma-
le sequence for Jl . Since mj (l) E cA and cA 4 cA(l) for lGe 0 , then from Lemma
4.6 we get the existence result.

Let us now prove (60). Assume l n K0 as nKQ and let un fuj0 , l n
�

Mj0
(l n ) be a solution to problem (52) with l4l n . Then up to a subsequence we

get the existence of l D0 such that

lim
nKQ s

RN

N˜unNp dx4 lim
nKQ s

RN

k(x)NunNp * dx4 l .

From Sobolev inequality, it follows that l FS N/p
VkVQ

2
N2p

p . On the other hand
since un �M(l n ) we have

l

N
1o(1) 4Jl n

(un ) G
1

N
S N/p

VkVQ

2
N2p

p 1o(1)

which yields l GS N/p
VkVQ

2
N2p

p . Therefore l 4S N/p
VkVQ

2
N2p

p and hence

lim
nKQ s

RN

(VkVQ2k(x) )NuNp *
n dx40 .

We set wn 4
un

Vun Vp *

, then Vwn Vp * 41 and lim
nKQ

Vwn VD1, p (RN )
p 4S . Hence we get

the existence of w0� D1, p(RN) such that one of the following alternatives holds
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1. w0 g0 and wn Kw0 strongly in the D1, p (RN ).

2 w0 f0 and either
i) N˜wnNp � dm4Sd x0

and NwnNp * Kdn4d x0

or
ii) N˜wnNp � dm Q4Sd Q and NwnNp * � dn Q4d Q .

Arguing as in [1, Lemma 3.11] it is possible to show that the alternative 1
and the alternative 2 ii) can not hold. Then we conclude that the unique possi-
ble behaviour is the alternative 2. i), namely we get the existence of x0 �RN

such that

N˜wnNp � dm4Sd x0
and NwnNp * � dn4d x0

.

Since

s
RN

N˜wnNp dx4S1o(1) 4Ss
RN

NwnNp * dx1o(1) 4
S

VkVQ
s

RN

k(x)Nwn Np * dx1o(1)

4
S

VkVQ

k(x0 )1o(1) ,

then we obtain that x0 � C(k). Using Lemma 5.1, we conclude that x0 4aj0
and

the result follows. r

6. – Further results.

In this section we use the Lusternik-Schnirelman category theory to get
multiplicity results for problem (52), we refer to [4] for a complete discussion.
We follow the argument by Musina see [17]. We assume that k is a nonnegati-
ve function and that 0 ElE e0 where e0 is chosen in such a way that

g Se0

S
hN/p

D
1

2
and e0 Ge 0 , being e 0 given in Lemma 4.8. We set for dD0

C(k) 4 ]a�RN Nk(a) 4Vk(x)VQ( and Cd (k) 4 ]x�RN : dist(x , C(k) ) Gd( .

We suppose that (K2) and the following assumption

there exist R0 , d0 D0 such that sup
NxNDR0

Nk(x)NGVkVQ2d0(K3)

hold. Let M(l) be defined by (56). Consider

MA(l) f ]u�M(l) : Jl (u) E cA( .

Then we have the following results.

LEMMA 6.1. – Let ]vn (n�N%M(l) be such that Jl (vn ) KcE cA and
J 8lNM(l)

(vn ) K0, then ]vn (n�N contains a convergent subsequence. Moreover
there exists e1 D0 such that if 0 ElEl 0 »4 min ]e0 , e1 (, then MA(l) c¯ and
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for any ]l n (n�N%R1 such that l n K0 as nKQ and ]vn (n�N% MA(l n ), there
exist ]xn (n�N%RN and ]rn (n�N%R1 such that xn Kx0 � C(k), rn K0 as nK

Q and

vn 2g S

VkVQ

h
N2p

p 2

urn
(Q2xn ) K0 in D1, p (RN ) ,(61)

where

ur (x) 4
Cr

(r
p

p21 1NxN
p

p21 )
N2p

p

(62)

and Cr is the normalizing constant to be Vur Vp * 41.

PROOF. – The proof is a direct modification of the arguments used in [1] and
it will be omitted. r

REMARK 6.2. – Notice that as a consequence of the above lemma we obtain
the existence of at least cat(MA(l) ) solutions that eventually can change
sign.

The main result of this section is the following Theorem, for the proof of
which we refer to [1].

THEOREM 6.3. – Assume that hypotheses (K0), (K2) and (K3) hold and let
dD0. Then there exists l 0 D0 such that for all 0 ElEl 0 , equation (52) has
at least catCd (k) C(k) positive solutions.

REMARK 6.4.

i) If C(k) is finite, then for l small, equation (52) has at least
Card (C(k) ) solutions.

ii) We give now a typical example where equation (52) has infinitely
many solutions. Let h : RKR1 be such that h is regular, h(0)40 and h(r)41

for rF
1

2
. We define k1 on [0 , 1 ] %R by

k1 (r) 4
.
/
´

1

12h(r) Nsin
1

r N
u

if r40 ,

if 0 ErG1 ,

where pEuEN . Notice that k1 has infinitely many global maxima achieved
on the set

C(k1 ) 4mrn 4
1

np
for nF1n .
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Now we define k to be any continuous bounded function such that k(x) 4

k1 (NxN) if NxNG1, VkVQG1 and lim
NxNKQ

k(x) 40. Since for all m�N there exists

d(m) such that cat(C)Cd
4m , then we conclude that equation (52) has at least

m solutions for lEl(d).
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