Abdellaoui, Boumediene and Felli, Veronica and Peral, Ireneo: 
Existence and nonexistence results for quasilinear elliptic equations involving the $p$-Laplacian
 Bollettino dell'Unione Matematica Italiana Serie 8 9-B (2006), fasc. n.2, p. 445-484,  (English)
pdf (407 Kb), djvu (334 Kb).  | MR2233146  | Zbl 1118.35010 
Sunto
L’articolo riguarda lo studio di un’equazione ellittica quasi-lineare con il p-laplaciano, caratterizzata dalla presenza di un termine singolare di tipo Hardy ed una nonlinearità critica. Si dimostrano dapprima risultati di esistenza e non esistenza per l’equazione con un termine singolare concavo. Quindi si passa a studiare il caso critico legato alla disuguaglianza di Hardy, fornendo una descrizione del comportamento delle soluzioni radiali del problema limite e ottenendo risultati di esistenza e molteplicità mediante metodi variazionali e topologici.
Referenze Bibliografiche
[1] 
B. ABDELLAOUI - 
V. FELLI - 
I. PERAL, 
Existence and multiplicity for perturbations of an equation involving Hardy inequality and critical Sobolev exponent in the whole $\mathbb{R}^N$, 
Adv. Diff. Equations, 
9 (
2004), 481-508. | 
Zbl 1220.35041[2] 
B. ABDELLAOUI - 
I. PERAL, 
Existence and nonexistence results for quasilinear elliptic equations involving the p-laplacian, 
Ann. Mat. Pura. Applicata, 
182 (
2003), 247-270. | 
Zbl 1223.35151[3] 
W. ALLEGRETTO - 
YIN XI HUANG, 
A Picone’s identity for the p-Laplacian and applications, 
Nonlinear. Anal. TMA., 
32, no. 7 (
1998), 819-830. | 
Zbl 0930.35053[4] 
A. AMBROSETTI, 
Critical points and nonlinear variational problems, 
Mém. Soc. Math. France (N.S.), no. 
49 (
1992). | 
fulltext EuDML | 
Zbl 0766.49006[5] 
A. AMBROSETTI - 
H. BREZIS - 
G. CERAMI, 
Combined Effects of Concave and Convex Nonlinearities in some Elliptic Problems, 
Journal of Functional Anal., 
122, no. 2 (
1994), 519-543. | 
Zbl 0805.35028[6] 
A. AMBROSETTI - 
J. GARCIA AZORERO - 
I. PERAL, 
Elliptic variational problems in $\mathbb{R}^N$ with critical growth, 
J. Diff. Equations, 
168, no. 1 (
2000), 10-32. | 
Zbl 0979.35050[7] 
H. BREZIS - 
X. CABRÉ, 
Some simple PDE’s without solution, 
Boll. Unione. Mat. Ital. Sez. B, 
8, no. 1 (
1998), 223-262. | 
fulltext bdim | 
fulltext EuDML[8] 
J. BROTHERS - 
W. ZIEMER, 
Minimal rearrangements of Sobolev functions, 
Acta Univ. Carolin. Math. Phys. 28, no. 2 (
1987), 13-24. | 
fulltext EuDML | 
Zbl 0659.46029[9] 
D. CAO - 
J. CHABROWSKI, 
Multiple solutions of nonhomogeneous elliptic equation with critical nonlinearity, 
Differential Integral Equations, 
10, no. 5 (
1997), 797-814. | 
Zbl 0889.35033[10] 
B. FRANCHI - 
E. LANCONELLI - 
J. SERRIN, 
Existence and uniqueness of nonnegative solutions of quasilinear equations in $\mathbb{R}^n$, 
Adv. Math., 
118, no. 2 (
1996), 177-243. | 
Zbl 0853.35035[11] 
J. GARCÍA AZORERO - 
E. MONTEFUSCO - 
I. PERAL, 
Bifurcation for the p-laplacian in $\mathbb{R}^N$, 
Adv. Differential Equations, 
5, no. 4-6 (
2000), 435-464. | 
Zbl 1004.35042[12] 
J. GARCÍA AZORERO - 
I. PERAL, 
Hardy Inequalities and some critical elliptic and parabolic problems, 
J. Diff. Eq., 
144 (
1998), 441-476. | 
Zbl 0918.35052[13] 
J. GARCÍA AZORERO - 
I. PERAL, 
Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term, 
Trans. Amer. Math. Soc., 
323, no. 2 (
1991), 877-895. | 
Zbl 0729.35051[14] 
N. GHOUSSOUB - 
C. YUAN, 
Multiple solution for Quasi-linear PDEs involving the critical Sobolev and Hardy exponents, 
Trans. Amer. Math. Soc., 
352, no. 12 (
2000), 5703-5743. | 
fulltext (doi) | 
MR 1695021 | 
Zbl 0956.35056[15] 
P. L. LIONS, 
The concentration-compactness principle in the calculus of variations. The limit case, part 1, 
Rev. Matemática Iberoamericana, 
1, no. 1 (
1985), 541-597. 484 | 
fulltext EuDML | 
fulltext (doi) | 
MR 850686[18] 
I. PERAL, 
Some results on Quasilinear Elliptic Equations: Growth versus Shape, in 
Proceedings of the Second School of Nonlinear Functional Analysis and Applications to Differential Equations, I.C.T.P. Trieste, Italy, 
A. Ambrosetti and it alter editors. 
World Scientific, 
1998. | 
MR 1703531[19] 
M. PICONE, 
Sui valori eccezionali di un parametro da cui dipende una equazione differenziale lineare ordinaria del secondo ordine, 
Ann. Scuola. Norm. Pisa., 
11 (
1910), 1-144. | 
fulltext EuDML | 
MR 1556637 | 
Zbl 41.0351.01[20] 
G. POLYA - 
G. SZEGO, 
Isoperimetric inequalities in mathematical physics, 
Gosudarstv. Izdat. Fiz. Mat., Moscow 
1962. | 
MR 253161 | 
Zbl 0101.41203[21] 
D. SMETS, 
Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, 
Trans. AMS, to appear. | 
fulltext (doi) | 
MR 2139932[22] 
J. SIMON, 
Regularité de la solution d’une equation non lineaire dans $\mathbb{R}^N$, 
Lectures Notes in Math, no. 
665, 
P. Benilan editor, 
Springer Verlag, 
1978. | 
MR 519432[25] 
S. TERRACINI, 
On positive entire solutions to a class of equations with singular coefficient and critical exponent, 
Adv. Diff. Equ., 
1, no. 2 (
1996), 241-264. | 
MR 1364003 | 
Zbl 0847.35045[26] 
J. L. VÁZQUEZ, 
A Strong Maximum Principle for Some Quasilinear Elliptic Equations, 
Applied Math. and Optimization., 
12, no. 3 (
1984), 191-202. | 
fulltext (doi) | 
MR 768629[27] 
M. WILLEM, 
Minimax theorems, 
Progress in Nonlinear Differential Equations and their Applications, 
24, 
Birkhäuser Boston, Inc., Boston, MA, 
1996. | 
fulltext (doi) | 
MR 1400007