bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Buttà, P. and Caprino, S. and Cavallaro, G. and Marchioro, C.:
On the dynamics of infinitely many charged particles with magnetic confinement
Bollettino dell'Unione Matematica Italiana Serie 8 9-B (2006), fasc. n.2, p. 371-395, (english)
pdf (500 Kb), djvu (211 Kb). | MR2233143 | Zbl 1150.82016

Sunto

Studiamo l'evoluzione temporale di un sistema di infinite particelle cariche, confinate a muoversi in un conduttore cilindrico illimitato attraverso un campo magnetico esterno e tra loro interagenti mediante un potenziale di tipo Coulomb. Dimostriamo l'esistenza, l'unicità e la quasi-località del moto. Forniamo inoltre alcune stime non banali sul comportamento del sistema per tempi lunghi.
Referenze Bibliografiche
[1] R. ALEXANDER, Time evolution for infinitely many hard spheres, Commun. Math. Phys., 49 (1976), 217-232.
[2] C. BAHN - Y.M. PARK - H.J. YOO, Nonequilibrium dynamics of infinite particle systems with infinite range interactions, J. Math. Phys., 40 (1999), 4337-4358. | Zbl 0988.82034
[3] P. BUTTÀ - E. CAGLIOTI - C. MARCHIORO, On the long time behavior of infinitely extended systems of particles interacting via a Kac potential, J. Stat. Phys., 108 (2002), 317-339. | Zbl 1031.82050
[4] P. BUTTÀ - E. CAGLIOTI - C. MARCHIORO, On the motion of a charged particle interacting with an infinitely extended system, Commun. Math. Phys., 233 (2003), 545-569. | Zbl 1034.82040
[5] E. CAGLIOTI - C. MARCHIORO - M. PULVIRENTI, Non-equilibrium dynamics of threedimensional infinite particle systems, Commun. Math. Phys., 215 (2000), 25-43. | Zbl 1019.82010
[6] E. CAGLIOTI - C. MARCHIORO, On the long time behavior of a particle in an infinitely extended system in one dimension, J. Stat. Phys., 106 (2002), 663-680. | Zbl 1138.82340
[7] P. CALDERONI - S. CAPRINO, Time evolution of infinitely many particles: an existence theorem, J. Stat. Phys., 28 (1982), 815-833. | Zbl 0514.60100
[8] R.L. DOBRUSHIN - J. FRITZ, Non-equilibrium dynamics of one-dimensional infinite particle systems with a hard-core interaction, Commun. Math. Phys., 55 (1977), 275-292. | Zbl 0987.82502
[9] A. FRIEDMAN, Stochastic differential equations and applications, vol. I, Academic Press New York (1975). | Zbl 0323.60056
[10] J. FRITZ - R.L. DOBRUSHIN, Non-equilibrium dynamics of two-dimensional infinite particle systems with a singular interaction, Commun. Math. Phys., 57 (1977), 67-81.
[11] O.E. LANFORD, Classical Mechanics of one-dimensional systems with infinitely many particles. I An existence theorem, Commun. Math. Phys., 9 (1968), 176-191. | Zbl 0164.25401
[12] O.E. Lanford, Classical Mechanics of one-dimensional systems with infinitely many particles. II Kinetic Theory, Commun. Math. Phys. 11 (1969), 257-292. | Zbl 0175.21401
[13] O.E. LANFORD, Time evolution of large classical systems, Moser Ed. Lect. Notes in Phys., Springer 38 (1975). | Zbl 0329.70011
[14] C. MARCHIORO - A. PELLEGRINOTTI - E. PRESUTTI, Existence of time evolution in $\nu$-dimensional Statistical Mechanics, Commun. Math. Phys., 40 (1975), 175-185.
[15] C. MARCHIORO - A. PELLEGRINOTTI - M. PULVIRENTI, Remarks on the existence of non-equilibrium dynamics, Coll. Math. Soc. Janos Bolyai, Proceedings Esztergom Summer School, 27 (1978), 733-746. | Zbl 0496.60100
[16] C. MARCHIORO - M. PULVIRENTI, Time evolution of infinite one-dimensional Coulomb Systems, J. Stat. Phys., 27 (1982), 809-822.
[17] E. PRESUTTI - M. PULVIRENTI - B. TIROZZI, Time evolution of infinite classical systems with singular, long-range, two-body interaction, Commun. Math. Phys., 47 (1976), 81-95.
[18] M. PULVIRENTI, On the time evolution of the states of infinitely extended particle systems, J. Stat. Phys., 27 (1982), 693-713. | Zbl 0511.60096
[19] D. RUELLE, Statistical Mechanics. Rigorous Results, W.A. Benjamin, Inc., New York-Amsterdam 1969.
[20] R. SIGMUND-SCHULTZE, On non-equilibrium dynamics of multidimensional infinite particle systems in the translation invariant case, Commun. Math. Phys., 100 (1985), 245-265. | Zbl 0607.60097
[21] Y. SINAI, Construction of the dynamics for one-dimensional systems of Statistical Mechanics, Sov. Theor. Math. Phys., 12 (1973), 487-501.
[22] Y. SINAI, The construction of the cluster dynamics of dynamical systems in Statistical Mechanics, Vest. Moskow Univ. Sez. I Math. Mech., 29 (1974), 153-176.

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali