Studiamo l'evoluzione temporale di un sistema di infinite particelle cariche, confinate a muoversi in un conduttore cilindrico illimitato attraverso un campo magnetico esterno e tra loro interagenti mediante un potenziale di tipo Coulomb. Dimostriamo l'esistenza, l'unicità e la quasi-località del moto. Forniamo inoltre alcune stime non banali sul comportamento del sistema per tempi lunghi.
Referenze Bibliografiche
[1] R. ALEXANDER, Time evolution for infinitely many hard spheres, Commun. Math. Phys., 49 (1976), 217-232.
[2] 
C. BAHN - 
Y.M. PARK - 
H.J. YOO, 
Nonequilibrium dynamics of infinite particle systems with infinite range interactions, 
J. Math. Phys., 
40 (
1999), 4337-4358. | 
Zbl 0988.82034[3] 
P. BUTTÀ - 
E. CAGLIOTI - 
C. MARCHIORO, 
On the long time behavior of infinitely extended systems of particles interacting via a Kac potential, 
J. Stat. Phys., 
108 (
2002), 317-339. | 
Zbl 1031.82050[4] 
P. BUTTÀ - 
E. CAGLIOTI - 
C. MARCHIORO, 
On the motion of a charged particle interacting with an infinitely extended system, 
Commun. Math. Phys., 
233 (
2003), 545-569. | 
Zbl 1034.82040[5] 
E. CAGLIOTI - 
C. MARCHIORO - 
M. PULVIRENTI, 
Non-equilibrium dynamics of threedimensional infinite particle systems, 
Commun. Math. Phys., 
215 (
2000), 25-43. | 
Zbl 1019.82010[6] 
E. CAGLIOTI - 
C. MARCHIORO, 
On the long time behavior of a particle in an infinitely extended system in one dimension, 
J. Stat. Phys., 
106 (
2002), 663-680. | 
Zbl 1138.82340[7] 
P. CALDERONI - 
S. CAPRINO, 
Time evolution of infinitely many particles: an existence theorem, 
J. Stat. Phys., 
28 (
1982), 815-833. | 
Zbl 0514.60100[8] 
R.L. DOBRUSHIN - 
J. FRITZ, 
Non-equilibrium dynamics of one-dimensional infinite particle systems with a hard-core interaction, 
Commun. Math. Phys., 
55 (
1977), 275-292. | 
Zbl 0987.82502[9] 
A. FRIEDMAN, 
Stochastic differential equations and applications, vol. 
I, 
Academic Press New York (
1975). | 
Zbl 0323.60056[10] J. FRITZ - R.L. DOBRUSHIN, Non-equilibrium dynamics of two-dimensional infinite particle systems with a singular interaction, Commun. Math. Phys., 57 (1977), 67-81.
[11] 
O.E. LANFORD, 
Classical Mechanics of one-dimensional systems with infinitely many particles. I An existence theorem, 
Commun. Math. Phys., 
9 (
1968), 176-191. | 
Zbl 0164.25401[12] 
O.E. Lanford, 
Classical Mechanics of one-dimensional systems with infinitely many particles. II Kinetic Theory, 
Commun. Math. Phys. 11 (
1969), 257-292. | 
Zbl 0175.21401[13] 
O.E. LANFORD, 
Time evolution of large classical systems, 
Moser Ed. 
Lect. Notes in Phys., 
Springer 38 (
1975). | 
Zbl 0329.70011[14] C. MARCHIORO - A. PELLEGRINOTTI - E. PRESUTTI, Existence of time evolution in $\nu$-dimensional Statistical Mechanics, Commun. Math. Phys., 40 (1975), 175-185.
[15] 
C. MARCHIORO - 
A. PELLEGRINOTTI - 
M. PULVIRENTI, 
Remarks on the existence of non-equilibrium dynamics, 
Coll. Math. Soc. Janos Bolyai, Proceedings Esztergom Summer School, 27 (
1978), 733-746. | 
Zbl 0496.60100[16] C. MARCHIORO - M. PULVIRENTI, Time evolution of infinite one-dimensional Coulomb Systems, J. Stat. Phys., 27 (1982), 809-822.
[17] E. PRESUTTI - M. PULVIRENTI - B. TIROZZI, Time evolution of infinite classical systems with singular, long-range, two-body interaction, Commun. Math. Phys., 47 (1976), 81-95.
[18] 
M. PULVIRENTI, 
On the time evolution of the states of infinitely extended particle systems, 
J. Stat. Phys., 
27 (
1982), 693-713. | 
Zbl 0511.60096[19] D. RUELLE, Statistical Mechanics. Rigorous Results, W.A. Benjamin, Inc., New York-Amsterdam 1969.
[20] 
R. SIGMUND-SCHULTZE, 
On non-equilibrium dynamics of multidimensional infinite particle systems in the translation invariant case, 
Commun. Math. Phys., 
100 (
1985), 245-265. | 
Zbl 0607.60097[21] Y. SINAI, Construction of the dynamics for one-dimensional systems of Statistical Mechanics, Sov. Theor. Math. Phys., 12 (1973), 487-501.
[22] Y. SINAI, The construction of the cluster dynamics of dynamical systems in Statistical Mechanics, Vest. Moskow Univ. Sez. I Math. Mech., 29 (1974), 153-176.