Faenzi, Daniele: 
Cohomology of Tango bundle on $\mathbb{P}^5$
 Bollettino dell'Unione Matematica Italiana Serie 8 9-B (2006), fasc. n.2, p. 319-326,  (English)
pdf (399 Kb), djvu (85 Kb).  | MR 2233141  | Zbl 1178.14011 
Sunto
-- Il fibrato di Tango è definito come pull-back del fibrato di Cayley $C$ su una e quadrica liscia $Q_5$ in $\mathbb{P}_6$ attraverso una funzione $f$ definita in caratteristica 2 che fattorizza il morfismo di Frobenius $\varphi$. La coomologia di $T$ è calcolata in termini di $S \otimes C$, $\varphi^*(C)$, $\text{Sym}^2(C)$ e $C$, che si studiano con il teorema di Borel-Bott-Weil.
Referenze Bibliografiche
[Bea00] ARNAUD BEAUVILLE, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39-64.
[BGS87] 
RAGNAR-OLAF BUCHWEITZ - 
GERT-MARTIN GREUEL - 
FRANK-OLAF SCHREYER, 
Cohen-Macaulay modules on hypersurface singularities. II, 
Invent. Math. 88 (
1987), no. 1, 165-182. | 
fulltext EuDML[DMS92] 
WOLFRAM DECKER - 
NICOLAE MANOLACHE - 
FRANK-OLAF SCHREYER, 
Geometry of the Horrocks bundle on $\mathbb{P}^5$, 
Complex projective geometry (Trieste, 1989/ Bergen, 1989), 
London Math. Soc. Lecture Note Ser., vol. 
179, 
Cambridge Univ. Press, Cambridge, 
1992, pp. 128-148. | 
Zbl 0774.14013[Fae03] 
DANIELE FAENZI, 
A Geometric Construction of Tango Bundle on $\mathbb{P}^5$, 
Kodai Mathematical Journal 27 (
2004), no. 1, 1-6. | 
Zbl 1093.14506[GS] DANIEL R. GRAYSON - MICHAEL E. STILLMAN, Macaulay 2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
[Hor78] 
GEOFFREY HORROCKS, 
Examples of rank three vector bundles on five-dimensional projective space, 
J. London Math. Soc. (2) 
18 (
1978), no. 1, 15-27. | 
Zbl 0388.14009[Jan87] 
JENS CARSTEN JANTZEN, 
Representations of algebraic groups, 
Pure and Applied Mathematics, vol. 
131, 
Academic Press Inc., Boston, MA, 
1987. | 
Zbl 0654.20039[Kap86] MIKHAIL M. KAPRANOV, Derived category of coherent bundles on a quadric, Funktsional. Anal. i Prilozhen. 20 (1986), no. 2, 67; English translation in Funct. Anal. Appl. 20 (1986), 141-142.
[Nag62] 
MASAYOSHI NAGATA, 
Complete reducibility of rational representations of a matric group, 
J. Math. Kyoto Univ. 1 (
1961/1962), 87-99. | 
Zbl 0106.25201[Ott90] 
GIORGIO OTTAVIANI, 
On Cayley bundles on the five-dimensional quadric, 
Boll. Un. Mat. Ital. A (7) 
4 (
1990), no. 1, 87-100. | 
Zbl 0722.14006[Tan76] 
HIROSHI TANGO, 
On morphisms from projective space $P^n$ to the Grassmann variety $\text{Gr}(n, d)$, 
J. Math. Kyoto Univ. 16 (
1976), no. 1, 201-207. | 
Zbl 0326.14015