Ballico, Edoardo: 
Holomorphic vector bundles on certain holomorphically convex complex manifolds
 Bollettino dell'Unione Matematica Italiana Serie 8 9-B (2006), fasc. n.2, p. 261-265,  (English)
pdf (299 Kb), djvu (63 Kb).  | MR 2233136  | Zbl 1178.14008 
Sunto
Qui proviamo l'esistenza di fibrati vettoriali olomorfi non triviali su ogni varietà complessa 0-convessa ma non Stein e su certe classi di varietà complesse olomorficamente convesse.
Referenze Bibliografiche
[1] 
A. ANDREOTTI and 
H. GRAUERT, 
Théorèmes de finitude pour la cohomologie des espaces complexes, 
Bull. Soc. Math. France 90 (
1962), 193-259. | 
fulltext EuDML | 
Zbl 0106.05501[2] 
C. BANICA and 
J. LE POTIER, 
Sur l'existence des fibrés holomorphes sur une surface non-algebrique, 
J. Reine Angew. Math. 378 (
1987), 1-31. | 
fulltext EuDML | 
Zbl 0624.32017[3] 
J. BINGENER, 
Über formale komplexe Raume, 
Manuscripta Math. 24 (
1978), 253-293. | 
fulltext EuDML[4] 
M. COLTOIU, 
On the Oka-Grauert principle for 1-convex manifolds, 
Math. Ann. 310 (
1998), 561-569. | 
Zbl 0902.32011[5] 
H. FLENNER, 
Extendability of differential forms on non-isolated singularities, 
Invent. Math. 94 (
1988), 317-326. | 
fulltext EuDML | 
Zbl 0658.14009[6] 
G. HENKIN and 
J. LEITERER, 
The Oka-Grauert principle without induction over the base dimension, 
Math. Ann. 311 (
1998), 71-93. | 
Zbl 0955.32019[7] 
B. MALGRANGE, 
Faisceaux sur les variétés analytique-reélles, 
Bull. Soc. Math. France 85 (
1957), 231-237. | 
fulltext EuDML[8] 
H. SAMELSON, 
Notes on Lie Algebras, 
Universitext, 
Springer, 
1990. | 
Zbl 0708.17005[9] 
Y.-T. SIU, 
Analytic sheaf cohomology groups of dimension n of n-dimensional complex spaces, 
Trans. Amer. Math. Soc. 143 (
1969), 77-94. | 
Zbl 0186.40404[10] 
J. WINKELMANN, 
Every compact complex manifold admits a holomorphic vector bundle, 
Revue Roum. Math. Pures et Appl. 38 (
1993), 743-744. | 
Zbl 0813.32025[11] 
J. WINKELMANN, 
Complex analytic geometry of complex parallelizable manifolds, 
Mémoires Soc. Math. France 72-
73, 
1998. | 
fulltext EuDML | 
Zbl 0918.32015