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Explicit Solutions for a One-phase Stefan Problem
with Temperature-dependent Thermal Conductivity.

MARÍA F. NATALE - DOMINGO A. TARZIA

Sunto. – Si studia un problema di Stefan a una fase per un materiale semi-infinito con
un coefficiente di conduttività termica dipendente dalla temperatura e con una
condizione di temperatura costante o un flusso di calore del tipo 2q0 /kt (q0D0)
sulla faccia fissa x40. Si ottengono, in entrambi i casi, condizioni sufficienti per i
dati in modo da avere una rappresentazione parametrica della soluzione di tipo si-
milarità per tF t0D0 con t0 un tempo positivo arbitrario. Queste soluzioni esplici-
te sono ottenute attraverso l’unica soluzione di una equazione integrale dove il
tempo è un parametro.

Summary. – We study a one-phase Stefan problem for a semi-infinite material with
temperature-dependent thermal conductivity with a constant temperature or a heat
flux condition of the type 2q0 /kt (q0D0) at the fixed face x40. We obtain in both
cases sufficient conditions for data in order to have a parametric representation of
the solution of the similarity type for tF t0D0 with t0 an arbitrary positive time.
These explicit solutions are obtained through the unique solution of an integral
equation with the time as a parameter

.

I. – Introduction.

We will consider a phase-change problem (Stefan problem) for a non-linear
heat conduction equation for a semi-infinite region xD0 with a nonlinear ther-
mal conductivity k(u) given by

k(u) 4
rc

(a1bu)2
(1)

and phase change temperature u f . This kind of thermal conductivity or diffusion
coefficient was considered in [4, 5, 7, 8, 16, 18, 21, 24, 26, 29, 32]. The modeling of
this type of systems is a great mathematical and industrial significance problem.
Phase-change problems appear frequently in industrial processes and other pro-
blems of technological interest [1, 2, 9, 10, 11, 13, 14, 15, 17, 19, 20]. A recent large
bibliography on the subject was given recently in [31].
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The mathematical formulation of our free boundary (fusion process) pro-
blem consists in determining the evolution of the moving phase separation x4

s(t) and the temperature distribution u4u(x , t) satisfying the conditions

rc
¯u

¯t
4

¯

¯x
gk(u)

¯u

¯x
h , 0 ExEs(t), tD0(2)

k(u(0 , t) )
¯u

¯x
(0 , t) 42

q0

kt
, q0 D0, tD0(3)

k(u(s(t), t) )
¯u

¯x
(s(t), t) 42rl s(t)

l

, tD0(4)

u(s(t), t) 4u f , tD0(5)

s(0) 40(6)

where a1bu f D0, in order to guarantee that k is well defined. Here 2q0 /kt
denotes the prescribed flux on the boundary x40 which is of the type imposed
in [30]; a constant temperature boundary condition on x40 of the type (52)
will be considered later. In [30] it was proven that the heat flux condition (3)
on the fixed face x40 is equivalent to the constant temperature boundary
condition (52) for the two phase Stefan problem for a semi-infinite material
with constant thermal coefficient in both phases. This kind of heat flux condi-
tion (3) was also considered in numerous papers, e.g. [3, 12, 25]. Other pro-
blems in this subject are [6, 22, 26, 27].

The free boundary problem (2)-(6) with k(u) defined by (1) is the particular
case of one studied in [23, 28] by taking the parameter d40 for the following
equation

rc
¯u

¯t
4

¯

¯x
gk(u)

¯u

¯x
h2v(u)

¯u

¯x
, 0 ExEs(t), tD0(7)

where the thermal conductivity k(u) and the velocity term v(u) are given by (1)
and

v(u) 4rc
d

2(a1bu)2
(8)

respectively, and c , r and l are the specific heat, the density and the latent
heat of fusion of the medium respectively, all of them are assumed to be con-
stant with positive parameters a , b and d .

In those papers temperature and flux type conditions on the fixed face x4

0 were studied. Furthermore, necessary and sufficient conditions for the exi-
stence of an explicit solution was found in [23]. Here we study the case without
the velocity term, i.e. d40 in the differential equation (7) which cannot be ob-
tained from what it was previously done in [23, 28] for the case dc0. In those
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papers it was defined the transformation

y4
2

d
[ (11dx)1/2 21](9)

which is the identity if we take dK0 since

lim
dK0

2

d
[ (11dx)1/2 21] 4x , ( xD0 .

Then, the case d40 must be solved by using other techniques which will
be the goal of this study.

In Section II we prove the existence and uniqueness of an explicit solution
of the similarity type of the free boundary problem (2)-(6) for tF t0 D0 with t0

an arbitrary positive time when data satisfy condition a1bu f Fbl/c . The sol-
ution is explicitly given by (41)-(47), and by (50)-(86) for the cases a1bu f D

bl/c and a1bu f 4bl/c respectively. The explicit solution for the two cases is ob-
tained through the unique solution of an integral equation in which time is a
parameter.

Besides, there does not exist any solution of the similarity type to the free
boundary problem (2)-(6) for the case a1bu f Ebl/c .

In Section III we replace the flux condition (3) for a constant temperature
boundary condition on the fixed face x40, given by (52). We prove existence
and uniqueness of an explicit solution of the similarity type of the problem (2),
(4)-(6) and (52) for tF t0 D0 with t0 an arbitrary positive time when data veri-
fies condition a1bu f Fbl/c . The solution is explicitly given by (76)-(82), and
by (84)-(86) for the cases a1bu f Dbl/c and a1bu f 4bl/c respectively. The
explicit solution for the two cases is also obtained through the unique solution
of an integral equation in which the time is a parameter.

II. – Existence and uniqueness of solution of the free boundary problem
with flux boundary condition on the fixed face.

We consider the free boundary problem (2)-(6) with the parameters a , b
and the coefficients l , c satisfy the following condition

a1bu f D
bl

c
.(10)

If we define

U4
1

a1bu
,(11)
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the problem (2)-(6) becomes

¯U

¯t
4U 2 ¯ 2 U

¯x 2
, 0 ExEs(t), tD0(12)

¯U

¯x
(0 , t) 4

w

kt
, tD0(13)

¯U

¯x
(s(t), t) 4

bl

c
s
l

(t), tD0(14)

U(s(t), t) 4
1

a1bu f

, tD0(15)

s(0) 40(16)

where w is a constant defined by

w4
bq0

rc
.(17)

Let us perform the transformation

x(x , t) 4s
0

x
dh

U(h , t)
C(x , t) 4U(x , t)(18)

and

S(t) 4x(s(t), t) .(19)

The problem (12)-(16) becomes

¯C

¯t
4

¯ 2 C

¯x 2
2

w

kt

¯C

¯x
, 0 ExES(t), tD0(20)

¯C

¯x
(0 , t) 4

w

kt
C(0 , t), tD0(21)

¯C

¯x
(S(t), t) 4

1

(a1bu f )g c

bl
(a1bu f )21h gS

l

(t)2
w

kt
h , tD0(22)

C(S(t), t) 4
1

a1bu f

, tD0(23)

S(0) 40(24)
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where

S
l

(t) 4ga1bu f 2
bl

c
h s

l

(t)1
w

kt
.(25)

If we introduce the similarity variable

j4
x

2kt
,(26)

and the solution is sought of type

C(x , t) 4W(j) 4Wg x

2kt
h(27)

then the free boundary S(t) of the problem (20)-(24) must be of the type

S(t) 42L 1 kt , tD0(28)

with L 1 D0 an unknown coefficient to be determined and the problem (20)-
(24) yields

W 9 (j)12W 8 (j)(j2w) 40, 0 EjEL 1(29)

W 8 (0) 42wW(0)(30)

W(L 1 ) 4
1

a1bu f

(31)

W 8 (L 1 ) 4
2

(a1bu f )g c

bl
(a1bu f )21h (L 1 2w) .(32)

Taking into account the expression (25) we have

s(t) 42l 1 kt(33)

with

l 1 4
L 1 2w

a1bu f 2
bl

c

.(34)

If we integrate (29) we obtain

W(j) 4D1 erf (j2w)1C1(35)

where D1 and C1 are two constants of integration which can be determined
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from (30) and (31)

D1 4
kpw exp (w 2 )

(a1bu f )[11kpw exp (w 2 )( erf (L 1 2w)1erf (w) ) ]
(36)

C1 4
11kpw exp (w 2 ) erf (w)

(a1bu f )(11kpw exp (w 2 )( erf (L 1 2w)1erf w) ) )
(37)

Now, we have to consider here the condition (32) which implies that L 1 mu-
st be the solution of the following equation

W1 (x) 4W2 (x) , xDw(38)

where

W1 (x) 4
w exp (w 2 ) exp [2(x2w)2 ]

11w exp (w 2 ) kp( erf (x2w)1erf (w) )
(39)

and

W2 (x) 4
bl

c(a1bu f )2bl
(x2w) .(40)

It is easy to prove that W1 (0) 4wD0, W1 (1Q) 40, and W1 is a decreasing
function, and W2 (w) 40, W2 (1Q) 41Q and W2 is an increasing function be-
cause condition (10). So, there exists a unique solution L 1 of the equation (38)
and then we have the following theorem.

THEOREM 1. – Let us consider the hypothesis (10).
(i) If (U , s) is a solution of the free boundary problem (12)-(16) then U4

U(x , t) is a solution, in variable x , of the integral equation:

U(x , t) 4C1 1D1 erf
u s

0

x dh

U(h , t)

2kt
2w

v
, 0 GxGs(t) ,(41)

where tD0 is a parameter and w , D1 and C1 are defined by (17), (36) and (37)
respectively, and s(t) is given by (33) and L 1 is the unique solution of the Eq.
(38). Moreover, function Y(x , t) defined by

Y(x , t) 4
1

2 kt
s
0

x
dh

U(h , t)
2w , 0 GxGs(t), tD0(42)
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satisfies the conditions

¯Y

¯x
(x , t) 4

1

2kt

1

U(x , t)
, 0 ExEs(t), tD0(43)

Y(0 , t) 42w , tD0(44)

(45)
¯Y

¯t
(x, t)42

1

2t
gY(x, t)1

D1

kp

exp (2Y 2 (x, t))

U(x, t)
h , 0ExEs(t), tD0

Y(s(t), t) 4L 1 2w , tD0(46)

(ii) Conversely, if U is a solution of the integral equation (41) with s given
by (33) and function Y , defined by (42) satisfies the conditions (43)-(46), and
w , D1 and C1 are defined by (17), (36) and (37) respectively, and L 1 is the uni-
que solution of the Eq. (38) then (U , s) is a solution of the free boundary pro-
blem (12)-(16).

(iii) The integral equation (41) has a unique solution for tF t0 D0 with t0 is
an arbitrary positive time.

(iv) The free boundary problem (2)-(6) satisfying the hypothesis (10) has a
unique similarity type solution (u , s) for tF t0 D0 (with t0 an arbitrary positive
time) which is given by

u(x , t) 4
1

b
y 1

U(x , t)
2az , 0 ExEs(t), tF t0 D0(47)

s(t) 4
2(L 1 2w)

a1bu f 2
bl

c

kt , tF t0 D0(48)

where U is the unique solution of the integral Eq. (41) where L 1 is the unique
solution of the Eq. (38), and w , D1 and C1 are defined by (17), (36) and (37)
respectively.

PROOF.
(i) From the previous computation we have

U(x , t) 4W(j) 4C1 1D1 erf (j2w) 4C1 1D1 erf
u s

0

x dh

U(h , t)

2kt
2w

v
that is U is a solution of the integral equation (41). Function Y , defined by (42),
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satisfies the conditions (43), (44) by elementary computations, and

¯Y

¯t
(x , t) 42

1

4 tkt
s
0

x
dh

U(h , t)
2

1

2kt
s
0

x

U xx (h , t) dh4

2
1

2 t
(Y(x , t)1w)2

1

2kt
(U x (x , t)2U x (0 , t) ) 4

2
1

2kt
g Y(x , t)

kt
1U x (x , t)h42

1

2kt
u Y(x , t)

kt
1

D1

kpt

exp (2Y 2 (x , t) )

U(x , t)
v

that is (45). Finally we get

Y(s(t), t) 4
1

2kt
s
0

s(t)

dh

U(h , t)
2w4

x(s(t), t)

2kt
2w4

S(t)

2kt
2w4L 12w

that is (46).
(ii) In order to proof that (U , s) is a solution of the free boundary problem

(12)-(16) we get:
a)

U xx (x , t) 4u D1

kpt

exp (2Y 2 (x , t) )

U(x , t)
v

x

4

2
D1

kpt

exp (2Y 2 (x , t) )

U 2 (x , t)
gY(x , t)1

D1

kp

exp (2Y 2 (x , t) )

U(x , t)
h ;

b)

U t (x , t) 4
2D1

kp
exp (2Y 2 (x , t) ) Yt (x , t) 4

42(D1 /kpt) exp (2Y 2 (x , t) )gY(x , t)1
D1

kp

exp (2Y 2 (x , t) )

U(x , t)
h

that is Eq. (12);
c)

U(0 , t) 4C1 2D1 erf (w) 4
D1

kpw exp (w 2 )
;

d)

U x (0 , t) 4
D1

kpt

exp (2Y 2 (0 , t) )

U(0 , t)
4

w

kt
, that is (13) ;
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e)

U(s(t), t) 4C1 1D1 erf (L 1 2w) 4
1

a1bu f

, that is (15) ;

f)

U x (s(t), t) 4
D1

kpt

exp (2Y 2 (s(t), t) )

U(s(t), t)
4

(a1bu f ) D1

kpt
exp (2(L 1 2w)2 ) 4

1

kt
W1 (L 1 ) 4

1

kt
W2 (L 1 ) 4

1

kt

bl

c(a1bu f )2bl
(L 1 2w) 4

bll 1

ckt
4

bl

c
s
l

(t), that is (14)

(iii) Now in order to complete the proof, we just have to proof the existence
of a solution of the integral equation (41). If we define Y(x , t) by (42) then, Eq.
(41) is equivalent to the following Cauchy differential problem

.
/
´

¯Y

¯x
(x , t) 4

1

2kt

1

(C1 1D1 erf (Y(x , t) ) )
fG1 (x , t , Y(x , t) ) ,

0 ExEs(t) , tD0 , Y(0 , t) 42w ,

(49)

with a positive parameter tD0. We have N ¯G1

¯Y N G
D1

C1
2 kpt

which is bounded

for all tF t0 D0, 0 GxGs(t), for an arbitrary positive time t0 . Then, problem
(49) (i.e. the integral Eq. (41)) has a unique solution for tF t0 D0, for an arbit-
rary positive time t0 .

(iv) It follows from elementary but tedious computation. r

REMARK 1. – Y(x , t) dos not possess a limit at (0 , 0 ) because Y(0 , t) 42

w42
bq0

rc
E0 for tD0 and lim

t O 0
Y(s(t), t) 4L 1 2wD0 for all tD0.

If U is the solution of the integral equation (41) then U is strictly monotone
in variable x . We obtain that u(x , t) 4 (1 /U(x , t)2a) /b does not have limit
when (x , t) K (0 , 0 ) but u(x , t) is bounded in a neighborhood of (0 , 0 ) chec-
king that

u f 4 lim
(h , t) O (0 , 0 )

inf u(h , t) Gu(x , t) G lim
(h , t) O (0 , 0 )

sup u(h , t) 4

4u f 1
a1bu f

b
kpw exp (w 2 )( erf (w)1erf (L 1 2w) ) .

When the hypothesis (10) is not satisfied we can follow an analogous
method to the one described before in order to obtain the following
result.
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THEOREM 2. – (i) The result of the Theorem 1 is also true if we replace the

condition (10) by a1bu f 4
bl

c
. Furthermore, in this case, the solution of the

free boundary problem (2)-(6) is given by

u(x , t) 4
1

b
y 1

U(x , t)
2az , s(t) 42D0o t

p
(50)

where U is the unique solution of the following integral equation

U(x , t) 4D0 erf
u s

0

x dh

U(h , t)

2kt
2w

v
1

c

bl
, 0 GxGs(t) ,(51)

with

D0 4
q0 kpexp (w 2 )

rl(11kpw exp (w 2 ) erf (w) )

for tF t0 D0, 0 GxGs(t) for any arbitrary positive time t0 and w defined by
(17).

(ii) There does not exist any solution to the free boundary problem (2)-(6)

for the case a1bu f E
bl

c
.

PROOF. – (i) It follows by using a similar method to the one developed for
Theorem 1.

(ii) The non existence of any solution of the similarity type is due to the non
existence of real solution of the Eq. (38).

III. – Existence and uniqueness of solution of the free boundary problem
with temperature boundary condition on the fixed face.

In this section we consider the free boundary problem given by (2), (4)-(6)
and the temperature boundary condition

u(0 , t) 4u 0 , tD0 (u 0 Du f )(52)

instead of the heat flux boundary condition (3) on the fixed face x40 where
the nonlinear thermal conductivity is given by (1). We also suppose that condi-
tion (10) is verified. If we define U as in (11), the free boundary problem (2),
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(4)-(6) and (52) transforms to (12), (14)-(16) and

U(0 , t) 4
1

a1bu 0

.(53)

We also define (18) and (19) and we obtain (23), (24) and

(54)
¯C

¯t
(x, t)4

¯ 2C

¯x 2
(x, t)2(a1bu 0)

¯C

¯x
(x, t)

¯C

¯x
(0, t), 0ExES(t), tD0

C(0 , t) 4
1

a1bu 0

(55)

(56)
¯C

¯x
(S(t), t)4

1

(a1bu f ) k c

bl
(a1bu f )21l gS

l

(t)2(a1bu 0 )
¯C

¯x
(0 , t)h

and

S
l

(t) 4 s
l

(t)(a1bu f 2
bl

c
)1 (a1bu 0 )

¯C

¯x
(0 , t) .(57)

Now, introducing (26) and (27) we get (28) and (31) with coefficient L 2 in-
stead of L 1 and

W 9 (j)12W 8 (j)gj2
W 8 (0)

2
(a1bu 0 )h40, 0 EjEL 2(58)

W(0) 4
1

a1bu 0

(59)

W 8 (L) 4
2

(a1bu f ) k c

bl
(a1bu f )21l gL 2 2

W 8 (0)

2
(a1bu 0 )h .

Taking into account (28) and (57) we have

s(t) 42l 2 kt(61)

with

l 2 4
L 2 2r

a1bu f 2
bl

c

(62)
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where

r4
W 8 (0)(a1bu 0 )

2
.(63)

If we integrate (58) we obtain

W(j) 4D2 erf (j2r)1C2(64)

where D2 and C2 are two constant of integration to be determined later. By
considering (31) with L 2 instead of L 1 and (59) we get

D2 4
b(u 0 2u f )

(a1bu f )(a1bu 0 )(erf (r)1erf (L 2 2r) )
,(65)

C2 4
1

a1bu f
g12

b(u 0 2u f ) erf (L 2 2r)

(a1bu 0 )(erf (r)1erf (L 2 2r) )
h .(66)

Then function W is given by the following expression

W(j) 4
1

a1bu f

y11
b(u 0 2u f )(erf (j2r)2erf (L 2 2r) )

(a1bu 0 )(erf (r)1erf (L 2 2r) )
z ,(67)

where L 2 and r are unknowns which must be obtained. From (60) and (63) we
have

erf (L 2 2r) 4F(r)(68)

where

F(x) 42erf (x)1
1

kp

b(u 0 2u f )

(a1bu f )

exp (2x 2 )

x
, xD0 .(69)

From [6] we known that F(01 ) 41Q , F(1Q) 421 and F is a decrea-
sing function, then there exist r0 4F 21 (0) Dr1 4F 21 (1) D0 such as F(r) �
(21, 1 ) for all rDr1 , that is

L 2 2r4erf21 [ F( r ) ], with rDr1 4F 21 (1) .(70)

Furthermore, taking into account (60) and (67) we obtain that

L 2 2r4g c

bl
(a1bu f )21h (a1bu f ) r exp (r 2 )exp (2(L 2 2r)2 )

(a1bu 0 )
,(71)

where r must be a solution of the following equation

W3 (x) 4W4 (x) , xDr1 4F 21 (1)(72)
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and functions W3 and W4 are defined by:

W3 (x) 4erf21 (F(x) ) exp ( ( erf21 (F(x) ) )2 )(73)

W4 (x) 4g c

bl
(a1bu f )21h (a1bu f ) x exp (x 2 )

(a1bu 0 )
.(74)

It’s easy to see that W3 (r1 ) 41Q , W3 (1Q) 42Q and W3 is a decrea-
sing function for all xDr1 . Furthermore, from (10) we have W4 (01 ) 4

0, W4 (1Q) 41Q and W4 is an increasing function. Therefore there exists a
unique solution r� (r1 , r0 ) of the equation (72) and then

L 2 4r1erf21y2erf (r)1
1

kp

b(u 0 2u f )

(a1bu f )

exp (2r 2 )

r
zDr ,(75)

and we obtain the following theorem.

THEOREM 3. – Let us consider the hypothesis (10).
(i) If (U , s) is a solution of the free boundary problem (2), (4)-(6) and (52)

then U4U(x , t) is a solution, in variable x , of the integral equation:

(76)

.
`
/
`
´

U(x, t)4
1

a1bu f

y
12

b(u 02u f)

(a1bu 0)

u
erf (L 22r)2erf

u s
0

x
dh

U(h, t)

2kt
2r

vv
erf (r)1erf (L 22r)

z
,

0GxGs(t) ,

where tD0 is a parameter and s(t) is given by (61), L 2 is the unique solution of
the Eq. (75) and r� (F 21 (1), F 21 (0) ) is the unique solution of Eq. (72) where
the function F is defined by (69), and function Y(x , t) defined by

Y(x , t) 4
1

2kt
s
0

x
dh

U(h , t)
2r , 0 GxGs(t), tD0(77)

satisfies the conditions

¯Y

¯x
(x , t) 42

1

2kt

1

U(x , t)
; 0 ExEs(t), tD0(78)

Y(0 , t) 42r , tD0(79)

(80)
¯Y

¯t
(x, t)42

1

2t
gY(x, t)1

D2

kp

exp (2Y 2 (x, t))

U(x, t)
h , 0GxGs(t), tD0

Y(s(t), t) 4L 2 2r , tD0(81)

where D2 is defined by (65).
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(ii) Conversely, if U is a solution of the integral equation (76) with s given
by (61) and function Y , defined by (77) satisfies the conditions (80)-(81), r is
the unique solution of Eq. (72), D2 are defined by (65), and L 2 is the unique
solution of the Eq. (75) then (U , s) is a solution of the free boundary problem
(2), (4)-(6) and (52).

(iii) The integral equation (76) has a unique solution for tF t0 D0 with t0 is
an arbitrary positive time.

(iv) The free boundary problem (2), (4)-(6) and (50) satisfying the hypothe-
sis (10) has a unique similarity type solution (u , s) for tF t0 D0 (with t0 an ar-
bitrary positive time) which is given by

u(x , t) 4
1

b
y 1

U(x , t)
2az , s(t) 4

2(L 2 2r) kt

a1bu f 2
bl

c

(82)

where U is the unique solution of the integral Eq. (76) and L 2 is the unique
solution of the Eq. (75) and r is the unique solution of Eq. (72).

PROOF. – (i) From the previous computation we have

U(x , t) 4W(j) 4C2 1D2 erf (j2r) 4C2 1D2 erfus
0

x
dh

U(h , t)
2kt2rv

that is U is a solution of the integral equation (76). Function Y , defined by (77),
satisfies the conditions (78), (79) by elementary computations, and

¯Y

¯t
(x , t) 42

1

4 tkt
s
0

x
dh

U(h , t)
2

1

2kt
s
0

x

U xx (h , t) dh4

2
1

2 t
(Y(x , t)1r)2

1

2kt
(U x (x , t)2U x (0 , t) )

2
1

2kt
g Y(x , t)

kt
1U x (x , t)h42

1

2kt
u Y(x , t)

kt
1

D2

kpt

exp (2Y 2 (x , t) )

U(x , t)
v

that is (80). Finally we get

Y(s(t), t) 4
1

2kt
s
0

s(t)

dh

U(h , t)
2r4

x(s(t), t)

2kt
2r4

S(t)

2kt
2r4L 22r

that is (81).
(ii) In order to prove that (U , s) is a solution of the free boundary problem

(10), (2), (4)-(6) and (52) we get:



EXPLICIT SOLUTIONS FOR A ONE-PHASE STEFAN PROBLEM ETC. 93

a)

U xx (x , t) 4u D2

kpt

exp (2Y 2 (x , t) )

U(x , t)
v

x

4

2
D2

kpt

exp (2Y 2 (x , t) )

U 2 (x , t)
gY(x , t)1

D2

kp

exp (2Y 2 (x , t) )

U(x , t)
h ;

b)

U t (x , t) 4
2D2

kp
exp (2Y 2 (x , t) ) Yt (x , t) 4

2
D2

kpt
exp (2Y 2 (x , t) )gY(x , t)1

D2

kp

exp (2Y 2 (x , t) )

U(x , t)
h

that is Eq. (12);
c)

U(0 , t) 4C2 2D2 erf (r) 4
1

a1bu f

2
b(u 0 2u f )

(a1bu f )(a1bu 0 )
4

1

a1bu 0

;

d)

U x (0 , t) 4
D2

kpt

exp (2Y 2 (0 , t) )

U(0 , t)
4

r

kt
, that is (13) ;

e)

U(s(t), t) 4C2 1D2 erf (L 2 2r) 4
1

a1bu f

, that is (15) ;

f )

U x (s(t), t) 4
D2

kpt

exp (2Y 2 (s(t), t) )

U(s(t), t)
4

(a1bu f ) D2

kpt
exp (2(L 2 2r)2 ) 4

a1bu f

a1bu 0

1

kt
r exp (r 2 ) exp (2(L 22r)2 )4

a1bu f

a1bu 0

1

kt
r exp (r 2 )

erf21 (F(r) )

W3 (r)
4

a1bu f

a1bu 0

1

kt
r exp (r 2 )

erf21 (F(r) )

W4 (r)
4

1

kt

bl

c(a1bu f )2bl
(L 2 2r) 4

bll 2

ckt
4

bl

c
s
l

(t), that is (14).
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(iii) Now in order to complete the proof, we just have to proof the existence
of a solution of the integral equation (76). If we define Y(x , t) by (77) then, Eq.
(76) is equivalent to the following Cauchy differential problem

(83)
.
/
´

¯Y

¯x
(x , t) 4

1

2kt

1

(C2 1D2 erf (Y(x , t) ) )
fG2 (x , t , Y(x , t) ) ,

0 ExEs(t) , tD0 , Y(0 , t) 42r ,

with a positive parameter tD0. We have N ¯G2

¯Y N G
D2

C2
2 kpt

which is bounded

for all tF t0 D0, 0 GxGs(t), for an arbitrary positive time t0 . Then, problem
(83) (i.e. the integral Eq. (76)) has a unique solution for tF t0 D0, for an arbit-
rary positive time t0 .

(iv) It follows from elementary but tedious computation. r

REMARK 2. – If U is the solution of the integral equation (76) then U is
strictly monotone in variable x . We obtain that u(x , t) 4 (1 /U(x , t)2a) /b
does not have a limit when (x , t) K (0 , 0 ) but u(x , t) is bounded in a neighbo-
rhood of (0 , 0 ) checking that

u f 4 lim
(h , t) O (0 , 0 )

inf u(h , t) Gu(x , t) Gu 0 4 lim
(h , t) O (0 , 0 )

sup u(h , t) ,

for 0 GxGs(t), tD0 .

The result of the Theorem 3 is also true if we replace condition (10) by
a1bu f 4bl/c .

THEOREM 4. – If condition a1bu f 4bl/c is satisfied then the solution of the
problem (2), (4)-(6) and (52) is given by

u(x , t) 4
1

b
y 1

U(x , t)
2az s(t) 4

2L 3 exp (L 3
2 )

a1bu 0

kt(84)

where U is the unique solution in variable x of the following integral
equation

(85)

.
`
/
`
´

U(x , t) 4
1

a1bu f

u
11

b(u 0 2u f )

(a1bu 0 )

erf
u s

0

x
dh

U(h , t)

2kt
2L 3

v
erf (L 3 )

v
,

0 GxGs(t)

for tF t0 D0 with t0 an arbitrary positive time and L 3 is the unique solution of
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the equation

x exp (x 2 ) erf (x) 4
b(u 0 2u f )

kp(a1bu f )
, xD0 .(86)

PROOF. – If we define (11) then, problem (2), (4)-(6) and (52) is transformed
in (12), (14)-(16) and (53). We also define (18) and (19) and we obtain (23), (24),
(54), (55) and

¯C

¯x
(S(t), t) 4 s

l

(t) .(87)

Now, introducing (26) and (27) we get (28), (31), (58) and (59). Taking into
account (14), (15) and (19) we have

¯U

¯x
(s(t), t) 4

lb

c
s
l

(t) ` W 8g W 8 (0)(a1bu 0 )

2
h 1

2kt
(a1bu f ) 4

lb

c
s
l

(t)

then s(t) 4l 3 kt where l 3 4W 8g W 8 (0)(a1bu 0 )

2
h . From (19) we have

S(t) 4
¯x

¯x
(s(t), t) s

l

(t)1
¯x

¯t
(s(t), t) 4(88)

4
1

U(s(t), t)
s
l

(t)1
¯U

¯x
(0 , t)2

¯U

¯x
(s(t), t) 4

4 (a1bu f ) s
l

(t)1
¯U

¯x
(0 , t)2

lb

c
s
l

(t) 4
¯U

¯x
(0 , t)

then

S
l

(t) 4W 8 (0)
1

2kt

1

U(0 , t)
4W 8 (0)

1

2kt
(a1bu 0 )(89)

that is (28) when

L 3 4
W 8 (0)(a1bu 0 )

2
(i.e. l 3 4W 8 (L 3 ) ) .(90)

If we integrate (58) we obtain

W(j) 4K3 exp (L 2 )
kp

2
erf (j2L 3 )1C3(91)
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where

K3 4
2b(u 0 2u f ) exp (2L 3

2 )

kp(a1bu 0 )(a1bu f ) erf (L 3 )
, C3 4

1

a1bu f

.(92)

We know that W 8 (0) 4K3 then L 3 must satisfy equation (86) which has a
unique solution L 3 D0 for all data. Taking into account (91) we get

l 3 4
2L 3 exp (L 3

2 )

(a1bu 0 )
(93)

and then the free boundary s(t) is given by (84).
Furthermore u and s are the solution of problem (2), (4)-(6) and (52) with

condition a1bu f 4
bl

c
if and only if U (defined by (11)) and s are the solution

of (12), (14)-(16) and (53). Then, U must satisfy the integral equation (85). This
integral equation is of the same type of (76), then it has a unique solution for
all tF t0 D0 with t0 an arbitrary positive time. We reach the thesis following an
argument similar to the one developed in Theorem 3. r

Finally we study the last case a1bu f E
bl

c
. Doing the same transforma-

tions that in the case a1bu f D
bl

c
we obtain (57)-(63) with coefficients l 4 , L 4

and p instead of l 2 , L 2 and r being

L 4 4p1erf21 [ F( p ) ] , with pDr1 4F 21 (1)(94)

and F was defined by (69). Furthermore L 4 Ep , with pDr0 4F 21 (0) (Dr1 ).
We have

W(j) 4K4 exp (p 2 )
kp

2
erf (j2p)1C4

where

K4 4
2

kp

exp (2p 2 ) b(u 0 2u f )

(a1bu f )(a1bu 0 )(erf (p)2erf (p2L 4 ) )
D0 ,(95)

C4 4
1

a1bu f
g11

b(u 0 2u f ) erf (p2L 4 )

(a1bu 0 )(erf (p)2erf (p2L 4 ) )
h ,(96)

and p must verify the following equation

W3 (x) 4W4 (x), xDr0(97)

Let h4g12
c

bl
(a1bu f )h (a1bu f )

(a1bu 0 )
and Z(x) 4x exp (x 2 ), xD0. It’s easy



EXPLICIT SOLUTIONS FOR A ONE-PHASE STEFAN PROBLEM ETC. 97

to see that h� (0 , 1 ) if and only if a1bu f E
bl

c
i.e. our hypothesis. Then, equa-

tion (97) is equivalent to

U(x) 4h , xDr0 for 0 EhE1(98)

where function U is defined by

U(x) 42
Z( erf21 (F(x) ) )

Z(x)
D0 , xDr0 4F 21 (0) .(99)

Function U has the following properties: lim
x O r0

U(x) 4
a1bu f

a1bu 0

Dh .

Then we have at least one solution of the equation (97). r

Then, we have the following result whose proof is parallel to the one of
Theorem 3.

THEOREM 5. – If the condition a1bu f E
bl

c
is satisfied then the free boun-

dary problem (2), (4)-(6) and (52) has at least one solution (u , s) for tF t0 D0
(with t0 an arbitrary positive time) which is given by

u(x , t) 4
1

b
y 1

U(x , t)
2az s(t) 4

2(p2L 4 ) kt

bl

c
2 (a1bu f )

(102)

with L 4 is given by (94) and p is a solution of Eq. (97), and U(x , t) is the corre-
sponding solution of the equivalent integral equation

(103)

.
`
`
/
`
`
´

U(x , t) 4

1

a1bu f

y
11

b(u 0 2u f )

(a1bu 0 )

u
erf (p2L 4 )1erf

u s
0

x
dh

U(h , t)

2 kt
2p

vv
erf (p)2erf (p2L 4 )

z
,

0 GxGs(t) ;

with tF t0 D0 is a parameter.
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