## Bollettino

Unione Matematica Italiana

## Giuseppe Lombardo

## Hodge Classes and Abelian Varieties of Quaternionic Type

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 9-B (2006), n.1, p. 247-256.

Unione Matematica Italiana
[http://wWw.bdim.eu/item?id=BUMI_2006_8_9B_1_247_0](http://wWw.bdim.eu/item?id=BUMI_2006_8_9B_1_247_0)

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2006.

# Hodge Classes and Abelian Varieties of Quaternionic Type. 

Giuseppe Lombardo (*)


#### Abstract

Sunto. - In questo articolo viene analizzato lo spazio delle classi di Hodge contenute nella coomologia intermedia di una varietà Abeliana di tipo quaternionico. Vengono costruite $\mathfrak{s l} l_{2}$-rappresentazioni che semplificano lo studio della congettura di Hodge in quanto l'agebricità di una classe implica quella di tutte le altre contenute nelle medesima rappresentazione.


Summary. - We obtain «coniugacy classes» (with respect to $a \mathfrak{\xi} l_{2}$ action) in the space of Hodge cycles in the middle cohomology of an Abelian variety of quaternionic type. The existence of such a class simplifies the study of the Hodge conjecture.

## 1. - Introduction.

The relationship between abelian varieties of Weil type, which provide an important test for the Hodge conjecture because of the existence of exceptional Hodge classes, and Kuga-Satake varieties was investigated by the present author in [L].

Now, we consider firstly the simple abelian varieties obtained (Poincarè's decomposition) from the Kuga-Satake varieties associated to $K 3$-type Hodge structures of dimension 8 and 7 and we analyze in detail the Hodge classes contained in their middle cohomology. The endomorphism ring of these varieties contains a quaternion algebra, so, using tools of representation theory, we construct «conjugacy classes» of cycles with respect to a $s l_{2}$ action. The algebricity of one element contained in a class implies obviously the algebricity of the elements contained in the same class, and this provides a simplification in the study of the Hodge conjecture for these varieties.

Using the same techniques, in section 5 we study more generally Abelian varieties of quaternionic type in order to obtain «conjugacy classes» of Hodge
(*) The author is supported by EAGER - European Algebraic Geometry Research training network, Contract number HPRN-CT-2000-00099 and by Progetto di Ricerca Nazionale COFIN 2002 «Geometria delle Varietà Algebriche».
cycles in their middle cohomology. The main result is Theorem 5 , in which we obtain a $s l_{2}$ representation of dimension $2 m+1$ contained in $B^{m}(X)$, where $X$ is a $2 m$-dimensional abelian variety of quaternionic type.

The study of abelian varieties whose endomorphism ring is a definite quaternion algebra over $\boldsymbol{Q}$ is very interesting since can provide information about Hodge classes of Weil-type abelian varieties. Indeed, recently van Geemen and Verra studied families of abelian 8 -folds of quaternionic type, called of spin (7)-type, and they showed that the Hodge conjecture for infinitely many families of abelian varieties of Weil type follows from the Hodge (2,2)-conjecture for such 8 -folds (see [vG-V]).

## 2. - Preliminary notions.

### 2.1. Hodge structures.

A rational Hodge structure of weight $k$ is a rational vectorspace $V$ with a decomposition of its complexification $V \otimes \boldsymbol{C}=\oplus_{p+q=k} V^{p, q}$ where $V^{p, q}$ are complex vector subspaces such that $\overline{V^{p, q}}=V^{q, p}$. The type of a Hodge structure of weight $k$ is the $k+1$-tuple $\left(\operatorname{dim} V^{k, 0}, \operatorname{dim} V^{k-1,1}, \ldots, \operatorname{dim} V^{0, k}\right)$, and in particular a weight-two Hodge structure is said to be of $K 3$-type if it has type (1, $n-2,1$ ).

Equivalently, a rational Hodge structure of weight $k$ can be defined using representation theory as a couple ( $V, h$ ) with $V$ rational vectorspace and $h: \boldsymbol{C}^{*} \rightarrow G L(V \otimes \boldsymbol{R})$ rational representation such that $h(t)=t^{k} \cdot I d$ for all $t$ in $\boldsymbol{R}$.

A rational polarized Hodge structure of weight $k$ is a 3 -tuple $(V, h, \psi)$ where $\psi$ is a polarization of the weight $k$ Hodge structure $(V, h)$, that is a bilinear map $\psi: V \times V \rightarrow \boldsymbol{Q}$ such that
(1) $\psi(h(z) v, h(z) w)=(z \bar{z})^{k} \psi(v, w) \forall v, w \in V \otimes \boldsymbol{R}, \forall z \in \boldsymbol{C}^{*}$
(2) $\psi(v, h(i) w)=\psi(w, h(i) v) \forall v, w \in V \otimes \boldsymbol{R}$
(3) $\psi(v, h(i) v)>0 \quad \forall v \in V \otimes \boldsymbol{R}-\{0\}$.

### 2.2. Hodge classes.

Let $V$ be a rational Hodge structure of even weight $2 m$, the space of its Hodge classes is $B(V):=V \cap V^{m, m}$. In case of smooth projective varieties $X$, we define the space of its (codimension $p$ ) Hodge cycles

$$
B^{p}(X):=H^{2 p}(X, \boldsymbol{Q}) \cap H^{p, p}(X) \subset H^{2 p}(X, \boldsymbol{C})
$$

and the direct summand $H d g(X)=\oplus_{p} B^{p}(X)$ is called the Hodge ring of $X$.

### 2.3. Hodge conjecture.

Let $X$ be a smooth projective variety, there are defined cycle class maps

$$
\begin{aligned}
\psi_{p}: C H^{p}(X)_{\boldsymbol{Q}} & \rightarrow H^{2 p}(X, \boldsymbol{Q}) \\
\sum a_{i} Z_{i} & \mapsto \sum a_{i}\left[Z_{i}\right]
\end{aligned}
$$

from the Chow group (with rational coefficients) $C H^{p}(X)_{Q}$ which associates to a subvariety $Z_{i} \subset X$ of codimension $p$ its cohomology class [ $Z_{i}$ ]. It is possible to show that the image of $\psi_{p}$ is contained in $B^{p}(X)$, and we have the

Hodge $(p, p)$ Conjecture. - The map $\psi_{p}: C H^{p}(X)_{Q} \rightarrow B^{p}(X)$ is surjective.

### 2.4. Kuga-Satake varieties.

Let $(V, h, \psi)$ be a weight 2 polarized Hodge structure of $K 3$-type and let $\left\{g_{1}, \ldots, g_{n}\right\}$ be a basis of $V$ in which the symmetric bilinear form $Q=-\psi$ is given by $Q=d_{1} X_{1}^{2}+d_{2} X_{2}^{2}-d_{3} X_{3}^{2}-\ldots-d_{n} X_{n}^{2}\left(d_{i} \in \boldsymbol{\boldsymbol { Q } _ { > 0 }}\right)$. We consider the Clifford algebra $C_{n}=\frac{T^{\otimes} V}{I(Q)}$ quotient of the tensor algebra $T^{\otimes} V$ by the the two-sided ideal $I(Q)=\langle v \otimes v-Q(v)\rangle$, and in the following we write simply $a_{1} \ldots a_{k}$ istead of $\overline{a_{1} \otimes \ldots \otimes a_{k}}$. Let $C_{n}^{+}$be the even Clifford subalgebra of $C_{n}$ (i.e. the subalgebra generated by the class of tensor products of elements of $V$ in even number) and let $J=\frac{1}{\sqrt{d_{1} d_{2}}} g_{1} g_{2}$. We have obviously $J^{2}=-1$ and the left multiplication by $J$ on $C_{n}^{+}$defines a complex structure on $C_{n, \boldsymbol{R}}^{+} \stackrel{\text { def }}{=} C_{n}^{+} \otimes_{\boldsymbol{Q}} \boldsymbol{R}$. Let now $C_{n, \boldsymbol{Z}}^{+}$be the lattice of linear combinations of elements of the basis of $C_{n}^{+}$with integer coefficients, the quotient

$$
K S=\frac{\left(C_{n, \boldsymbol{R}}^{+}, J\right)}{C_{n, \boldsymbol{Z}}^{+}}
$$

is a complex torus. This torus is an abelian variety since it admits the polarization

$$
E(v, w):=\operatorname{Tr}(\alpha \iota(v) w)
$$

where $\operatorname{Tr}(x)$ is the trace of the map «right multiplication on $C_{n}^{+}$by the element $x \in C_{n}^{+}$», $\iota$ is the canonical involution of the Clifford algebra and $\alpha \in C_{n}^{+}$is an element such that we have $\iota(\alpha)=-\alpha$ and $E(v, J v)>0$ for all $v$. The abelian variety
(KS, E)
is called the Kuga-Satake variety associated to the $k 3$-type Hodge structure ( $V, h, \psi$ ).

## 3. - Hodge structure of dimension 8.

We start our analysis with a Lemma on Clifford algebras constructed from a 8-dimensional vector space.

Lemma 3.1. - Let $V$ be a 8-dimensional vector space and let $Q_{8}=H y p \oplus H y p \oplus[a] \oplus[b] \oplus[c] \oplus[d]\left(a, b, c, d \in \boldsymbol{Q}_{>0}\right)$ be a quadratic form on $V$, we have

$$
C^{+}\left(Q_{8}\right) \cong g l_{4}(\boldsymbol{H}(\sqrt{a b c d}))
$$

where $\boldsymbol{H}=\boldsymbol{Q} \oplus \boldsymbol{Q} i \oplus \boldsymbol{Q} j \oplus \boldsymbol{Q} k$ is a quaternion algebra with $i^{2}=-a b$, $j^{2}=-a c, k^{2}=-a^{2} b c, i j=k, j k=i, k i=j$ and $\boldsymbol{H}(\sqrt{a b c d})=\boldsymbol{H} \otimes_{Q} \boldsymbol{Q}(\sqrt{a b c d})$.

Proof. - Let $\left\{e_{1}, \ldots, e_{8}\right\}$ be the diagonal basis for $Q_{8}$ such that $Q_{8}=$ $\operatorname{diag}(2,-2,2,-2, a, b, c, d)$; the center of $C_{8}^{+}$is generated by the element $z=e_{1} e_{2} \ldots e_{8}$ which satisfies

$$
z^{2}=(-1)^{7+6+5+4+3+2+1}(2)(-2)(2)(-2) a b c d=16 a b c d .
$$

Using the properties of Clifford algebras, we can show that

$$
C_{8}^{+} \cong\left(C_{6}^{+} \oplus e_{7} C_{6}^{-}\right) \otimes_{Q} \boldsymbol{Q}(\sqrt{z})
$$

Moreover, we have

$$
\begin{aligned}
& C_{6}^{+}=C_{4}^{+} \oplus e_{5} C_{4}^{-} \oplus e_{6} C_{4}^{-} \oplus e_{5} e_{6} C_{4}^{+} \\
& C_{6}^{-}=C_{4}^{-} \oplus e_{5} C_{4}^{+} \oplus e_{6} C_{4}^{+} \oplus e_{5} e_{6} C_{4}^{-} .
\end{aligned}
$$

We observe that
$e_{7} C_{4}^{-}=e_{5} e_{6}\left(e_{5} e_{6} e_{7} C_{4}^{-}\right), \quad e_{6} C_{4}^{-}=e_{5} e_{7}\left(e_{5} e_{6} e_{7} C_{4}^{-}\right), \quad e_{5} C_{4}^{-}=e_{6} e_{7}\left(e_{5} e_{6} e_{7} C_{4}^{-}\right)$
(multiplication by constants does not change linear spaces), therefore

$$
\begin{aligned}
C_{8}^{+}= & C_{4}^{+} \oplus e_{5} C_{4}^{-} \oplus e_{6} C_{4}^{-} \oplus e_{5} e_{6} C_{4}^{+} \oplus e_{7}\left(C_{4}^{-} \oplus e_{5} C_{4}^{+} \oplus e_{6} C_{4}^{+} \oplus e_{5} e_{6} C_{4}^{-}\right) \\
= & \left(C_{4}^{+} \oplus e_{5} e_{6} e_{7} C_{4}^{-}\right) \oplus e_{5} e_{6}\left(C_{4}^{+} \oplus e_{5} e_{6} e_{7} C_{4}^{-}\right) \oplus e_{5} e_{7}\left(C_{4}^{+} \oplus e_{5} e_{6} e_{7} C_{4}^{-}\right) \\
& \oplus\left(e_{6} e_{7}\right)\left(C_{4}^{+} \oplus e_{5} e_{6} e_{7} C_{4}^{-}\right) \\
= & \left(C_{4}^{+} \oplus e_{5} e_{6} e_{7} C_{4}^{-}\right) \oplus e_{5} e_{6}\left(C_{4}^{+} \oplus e_{5} e_{6} e_{7} C_{4}^{-}\right) \oplus e_{5} e_{7}\left(C_{4}^{+} \oplus e_{5} e_{6} e_{7} C_{4}^{-}\right) \\
& \oplus\left(-a e_{6} e_{7}\right)\left(C_{4}^{+} \oplus e_{5} e_{6} e_{7} C_{4}^{-}\right) .
\end{aligned}
$$

Let $B=C_{4}^{+} \oplus e_{5} e_{6} e_{7} C_{4}^{-}$, from (*) one has

$$
C_{8}^{+} \cong\left(B \oplus e_{5} e_{6} B \oplus e_{5} e_{7} B \oplus-a e_{6} e_{7} B\right) \otimes \boldsymbol{Q}(\sqrt{a b c d})
$$

Moreover, $B \cong g l_{4}(\boldsymbol{Q})$ (see [L, Thm 6.2]). The symbols $i=e_{6} e_{5}, j=e_{7} e_{5}$ and $k=-\alpha e_{6} e_{7}$ satisfy the rules of a quaternion algebra, therefore we have $C^{+}\left(Q_{8}\right) \cong g l_{4}(\boldsymbol{H}(\sqrt{a b c d}))$ as required.

We consider now the Lie algebra $\mathfrak{\Im o _ { 8 }}(\boldsymbol{C})$, the Dynkin diagram associated to such an algebra is $D_{4}$


## [0001]

Dynkin diagram $D_{4}$

So, we can denote by [0010] and [0001] be the two half-spin representations od $\mathfrak{\Im} 0_{8}(\boldsymbol{C})$ (see [F-H] for details) and we have

Lemma 3.2. - Let $(V, h, \psi)$ be a general weight-2 rational Hodge structure of dimension 8 and K3-type with polarization

$$
\psi \cong H y p \oplus H y p \oplus[a] \oplus[b] \oplus[c] \oplus[d] \quad\left(a, b, c, d \in \boldsymbol{Q}_{>0}\right)
$$

If $a b c d=1$ the associated Kuga-Satake variety is isogenous to $\left(A_{+} \times A_{-}\right)^{4}$ where $A_{ \pm}$are not-isogenous abelian varieties of dimension 8 with $H^{1}\left(A_{ \pm}, \boldsymbol{C}\right)$ isomorphic respectively to $[0010]^{2}$ or to $[0001]^{2}$.

Proof. - Let $K S$ be the Kuga-Satake variety associated to ( $V, h, \psi$ ) and let $q=a b c d$. It has dimension $\operatorname{dim}_{C} K S=\frac{2^{8-1}}{2}=64$ and, since $\operatorname{End}(K S) \cong$
$C_{8}^{+} \cong g l_{4}(\boldsymbol{H}(\sqrt{q}))$, if $q=1$ we obtain $C_{8}^{+} \cong g l_{4}(\boldsymbol{H} \oplus \boldsymbol{H})$. Hence, by Poincaré's theorem we have $K S \sim X^{4}$ with $X \sim A_{+} \times A_{-}$, where $A_{+}$and $A_{-}$are not isogenous abelian varieties of dimension $\operatorname{dim}_{C} A_{ \pm}=\frac{2^{6}}{2^{2} 2}=8$. Moreover, $H^{1}(K S, \boldsymbol{C}) \cong C_{8}^{+}\left(\psi_{C}\right)$ and using the isomorphism described in [F-H, p. 305] we have $H^{1}(K S, \boldsymbol{C}) \cong g l([0010]) \oplus g l([0001])$ (we recall that $\operatorname{dim}[0010]=$ $\operatorname{dim}[0001]=8)$. Therefore $H^{1}(K S, \boldsymbol{C}) \cong[0010]^{8} \oplus[0001]^{8}$ and, from Poincaré's decomposition, we have that $H^{1}\left(A_{+} \times A_{-}, \boldsymbol{C}\right) \cong[0010]^{2} \oplus[0001]^{2}$ so $H^{1}\left(A_{+}, \boldsymbol{C}\right) \cong[0010]^{2}$ and $H^{1}\left(A_{-}, \boldsymbol{C}\right) \cong[0001]^{2}$. Indeed, we cannot have $H^{1}\left(A_{+}, \boldsymbol{C}\right) \cong H^{1}\left(A_{-}, \boldsymbol{C}\right) \cong[0010] \oplus[0001]$ since it implies $A_{+} \sim A_{-}$and these varieties are not isogenous from Poincaré's theorem.

We can now prove the following
Theorem 3.3. - Let $A_{+}$and $A_{-}$be the simple Abelian varieties occurring in the decomposition of the Kuga-Satake variety associated to a general 8-dimensional K3 Hodge structure ( $V, h, \psi$ ). For each $A_{ \pm}$there is a 9-dimensional $\mathfrak{\xi l} l_{2}$ representation of Hodge cycles contained in $H^{8}\left(A_{ \pm}, \boldsymbol{Q}\right) \cap$ $H^{4,4}\left(A_{ \pm}\right)$.

Proof. - We consider the variety $A_{+}$(the situation is obviously analoguous for $\left.A_{-}\right)$. Writing $H^{1}\left(A_{+}, \boldsymbol{C}\right) \cong[0010]_{a} \oplus[0010]_{b}$ in order to distinguish the isomorphic copies, we have a $S L_{2}$-action (or, equivalently, a $\mathfrak{g l} l_{2}$-action) on $H^{1}\left(A_{+}, \boldsymbol{C}\right) \cong[0010]_{a} \oplus[0010]_{b}$. The element $H=\left(\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right) \in S L_{2}$ acts as $t$ on $[0010]_{a}$ and as $t^{-1}$ on $[0010]_{b}$. We can extend this action to $\wedge^{n} H^{1}\left(A_{1}, \boldsymbol{C}\right)$ in the obvious way and we consider the one-dimensional space $\wedge^{8}[0010]_{a} \cong$ [0000], the element $H$ acts on this space as $t^{8}$. Using repeatedly the element $Y=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) \in \mathfrak{g} l_{2}$ on $\wedge^{8}[0010]_{a}$, since the weights decrease by two under the action of $Y$ we obtain a $\mathfrak{s} l_{2}$-representation of dimension 9 . This representation is unique (it is maximal), therefore it must be defined over $\boldsymbol{Q}$ (that is, there exists a 9-dimensional subspace contained in $H^{8}(X, \boldsymbol{Q})$ such that the representation is the $\boldsymbol{C}$-tensorization of this subspace). Since ( $V, h, \psi$ ) is of type K3, on $V_{\boldsymbol{C}}$ the matrix of $h: \boldsymbol{C}^{*} \rightarrow G L\left(V_{\boldsymbol{R}}\right)$ can be diagonalized as $h(z)=$ $\operatorname{diag}\left(z^{2}, z \bar{z}, z \bar{z}, z \bar{z}, \bar{z}^{2}, z \bar{z}, z \bar{z}, z \bar{z}\right)$ and writing $z=\varrho e^{i \theta}$ we have $h(z)=\varrho^{2} h\left(e^{i \theta}\right)$. So if we choose $z \in S^{1}$ we obtain $h(z)=\operatorname{diag}\left(z^{2}, 1,1,1, z^{-2}, 1,1,1\right) \in$ $\mathrm{SO}_{8}(\boldsymbol{C})$.

Let $L_{i}$ be the functionals defined by $L_{i}\left(\operatorname{diag}\left(a_{j j}\right)\right)=a_{i i}($ see $[\mathrm{F}-\mathrm{H}] \mathrm{p} .163)$, we have

$$
L_{i}(h(z))= \begin{cases}z^{2} & i=1 \\ 1 & i=2,3,4\end{cases}
$$

In order to understand if the obtained $\xi l_{2}$ representation is contained in $B^{4}\left(A_{1}\right)$ we have to determine if its elements are contained in $H^{4,4}\left(A_{1}\right)$. We observe that the weights of the half-spin representation [0010] are $\frac{1}{2}\left( \pm L_{1} \pm\right.$ $L_{2} \pm L_{3} \pm L_{4}$ ) with an even number of minus. We can compute the matrix of the representation $\tilde{h}: S^{1} \rightarrow G L([0010])$ using $h$ and these weights

$$
\begin{gathered}
\frac{1}{2}\left(L_{1}+L_{2}+L_{3}+L_{4}\right)(h(z))=\sqrt{z^{2} \cdot 1 \cdot 1 \cdot 1}=z \\
\vdots \\
\frac{1}{2}\left(-L_{1}-L_{2}-L_{3}-L_{4}\right)(h(z))=\sqrt{z^{-2} \cdot 1 \cdot 1 \cdot 1}=z^{-1}=\bar{z}
\end{gathered}
$$

and we obtain $\tilde{h}(z) \cong(z, z, z, z, \bar{z}, \bar{z}, \bar{z}, \bar{z})$. Therefore, $\wedge^{8}[0010]$ has type (4, 4) and the whole representation is contained (by conjugation) in $B^{4}\left(A_{1}\right)=$ $H^{8}\left(A_{1}, \boldsymbol{Q}\right) \cap H^{4,4}\left(A_{1}\right)$. Looking at the $S L_{2}$-action, it is easy to find the spaces in which the cycles are contained and the situation can be summarized as follows

| weights | spaces | number of cycles |
| :---: | :---: | :---: |
| $t^{8}$ | $\wedge^{8}[0010]_{a}$ | 1 |
| $t^{6}$ | $\wedge^{7}[0010]_{a} \otimes[0010]_{b}$ | 1 |
| $t^{4}$ | $\wedge^{6}[0010]_{a} \otimes \wedge^{2}[0010]_{b}$ | 1 |
| $t^{2}$ | $\wedge^{5}[0010]_{a} \otimes \wedge^{3}[0010]_{b}$ | 1 |
| $t^{0}$ | $\wedge^{4}[0010]_{a} \otimes \wedge^{4}[0010]_{b}$ | 1 |
| $t^{-2}$ | $\wedge^{3}[0010]_{a} \otimes \wedge^{5}[0010]_{b}$ | 1 |
| $t^{-4}$ | $\wedge^{2}[0010]_{a} \otimes \wedge^{6}[0010]_{b}$ | 1 |
| $t^{-6}$ | $[0010]_{a} \otimes \wedge^{7}[0010]_{b}$ | 1 |
| $t^{-8}$ | $\wedge^{8}[0010]_{b}$ | 1. |

Moreover, we observe that the cycles are the [0000] representations (since are invariants) and that (by explicit computation) there are 10 [0000] representations contained in $H^{8}\left(A_{1}, \boldsymbol{Q}\right) \cap H^{4,4}\left(A_{1}\right)$. The last cycle necessarily must be contained in $\wedge^{4}[0010]_{a} \otimes \wedge^{4}[0010]_{b}$ otherwise, using the $S L_{2}$-action, the number of cycles necessarily increases.

## 4. - Hodge structure of dimension 7.

Now we consider Kuga-Satake varieties constructed from a 7-dimensional K3-type Hodge sructure. We show that these varieties can be decomposed in Abelian 8-folds of quaternionic type and, repeting the same argument of the
previous section, we compute the number of $\mathfrak{l l} l_{2}$ representations contained in the space of their codimension 4 Hodge cycles. We obtain the following

Theorem 4.1. - Let $(V, h, \psi)$ be a general weight 2 polarized Hodge structure of $\operatorname{dim} V=7$ and $\operatorname{dim} V^{2,0}=1$ with polarization $\psi \cong \operatorname{Hyp} \oplus \operatorname{Hyp} \oplus[a] \oplus[b] \oplus[c]\left(a, b, c \in \boldsymbol{Q}_{>0}\right)$, the associated Kuga-Satake variety is isogenous to four copies of an Abelian variety $A$ of dimension 8. The space of codimension 4 Hodge cycles of $A$ contains one 9-dimensional, one 5-dimensional and two 1-dimensionals $\xi_{2}$-representations.

Proof. - The matrix of the representation $h: S^{1} \rightarrow G L\left(V_{R}\right)$ can be diagonalized on $V_{C}$ as $h(z)=\operatorname{diag}\left(z^{2}, 1,1, z^{-2}, 1,1,1\right) \in S O_{7}(\boldsymbol{C})$ (see Lemma 3.2), therefore

$$
L_{i}(h(z))= \begin{cases}z^{2} & i=1 \\ 1 & i=2,3\end{cases}
$$

(see 3.2). From the isomorphism $C^{+} \cong g l_{4}(\boldsymbol{H})$ (analogous to Lemma 3.1, see also [vG]), we have the decomposition $K S \sim A^{4}$ where $A$ is a simple Abelian variety of dimension $\operatorname{dim}_{C} A=8$ with End $(A)=\boldsymbol{H}$. In similar way to Lemma 3.2,
 sion 8 and weights $\frac{1}{2}\left( \pm L_{1} \pm L_{2} \pm L_{3}\right)$. The Dynkin diagram associated to $\mathfrak{\Im} 0_{7}(\boldsymbol{C})$ is $B_{3}$ (see $[\mathrm{F}-\mathrm{H}]$ )

therefore we can write $S=$ [001]. Now, we repeat the argument of 3.3 ; the Hodge structure on this space is given by $\tilde{h}(z)=\operatorname{diag}(z, z, z, z, \bar{z}, \bar{z}, \bar{z}, \bar{z})$, $H^{1}(A, \boldsymbol{C}) \cong[001]_{a} \oplus[001]_{b}$ and we find a $S L_{2}$-representation of dimension 9 in $H^{8}(A, \boldsymbol{Q}) \cap H^{4,4}(A)$ starting from $\wedge^{8}[001]=[000]$ which has type $(4,4)$.

We can also compute (with the aid of the computer program «Lie») the number of the [000] representations in each component of
$\wedge^{8}\left([001]_{a} \oplus[001]_{b}\right)$ and we obtain

| weights | spaces | number of cycles |
| :---: | :---: | :---: |
| $t^{8}$ | $\wedge^{8}[001]_{a}$ | 1 |
| $t^{6}$ | $\wedge^{7}[001]_{a} \otimes[001]_{b}$ | 1 |
| $t^{4}$ | $\wedge^{6}[001]_{a} \otimes \wedge^{2}[001]_{b}$ | 2 |
| $t^{2}$ | $\wedge^{5}[001]_{a} \otimes \wedge^{3}[001]_{b}$ | 2 |
| $t^{0}$ | $\wedge^{4}[001]_{a} \otimes \wedge^{4}[001]_{b}$ | 4 |
| $t^{-2}$ | $\wedge^{3}[001]_{a} \otimes \wedge^{5}[001]_{b}$ | 2 |
| $t^{-4}$ | $\wedge^{2}[001]_{a} \otimes \wedge^{6}[001]_{b}$ | 2 |
| $t^{-6}$ | $[001]_{a} \otimes \wedge^{7}[001]_{b}$ | 1 |
| $t^{-8}$ | $\wedge^{8}[001]_{b}$ | 1. |

Obviously, we have the following situation
(1) one 9-dimensional representation generated by $\wedge^{8}$ [001],
(2) one 5 -dimensional representation generated by the cycle contained in $\wedge^{6}[001]_{a} \otimes \wedge^{2}[001]_{b}$ and not contained in the previous $\mathfrak{\xi l} l_{2}$ representation
(3) two 1-dimensional representations contained in $\wedge^{4}[001]_{a} \otimes \wedge$ ${ }^{4}[001]_{b}$.

Remark 4.2. - We observe that, starting from a 6-dimensional K3-type Hodge structure, we obtain (see [L]) that $K S \sim A^{4}$ where $A$ is an Abelian fourfold of Weil type. The endomorphism ring of $A$ is an imaginary quadratic field, and $H^{1}(A, \boldsymbol{C}) \cong[001] \oplus[010]$ where [001] and [010] are the half-spin representations of $\mathfrak{\xi} 0_{6}(\boldsymbol{C})$. These representations are not isomorphic, so in this case we don't have a $\mathfrak{s l} l_{2}$-action and we cannot find conjugacy classes. A direct computation of the [000]-representations shows that we have 3 cycles, $\wedge^{4}[010]$, $\wedge^{4}[001]$ and a third cycle contained in $\wedge^{2}[010] \otimes \wedge^{2}[001]$ (this cycle is $\left[E^{2}\right]$ where $E$ denotes the polarization of the variety).

## 5. - Abelian Varieties of quaternionic type.

Let now $X$ be an Abelian variety of dimension $2 m$ with $\operatorname{End}_{Q}(X)$ a totally definite quaternion algebra $\boldsymbol{H}$. From [Ab1] we have that the Mumford-Tate group of $X$ is isomorphic to $S O(2 m, \boldsymbol{C})$ and $H^{1}(X, \boldsymbol{C})=W \oplus W$ where $W$ is the standard representation of $S O(2 m, \boldsymbol{C})$. Hence, as is 3.3 , we have a $\mathfrak{s l} l_{2}$-representation of Hodge cycles corresponding to the action of $\boldsymbol{H}$. Now, we study this situation more in detail and we prove the following

Theorem 5.1. - Let $X$ be an Abelian variety of type III of dimension $2 m$. The space of codimension $m$ Hodge cycles contains a $\mathfrak{s l} l_{2}$-representation of dimension $2 m+1$.

Proof. - Let $x \in \boldsymbol{H}$ be a generical element of $\boldsymbol{H}$ with non trivial imaginary part, $\boldsymbol{Q}(x)$ is a imaginary quadratic field therefore there are $a, b \in \boldsymbol{Q}$ such that $x^{2}+a x+b=0$ and $A, B \in \boldsymbol{Q}$ such that $x^{4 m}+A x^{2 m}+B=0$. Let $M_{x}$ be the action of $x$ on $H^{2 m}(X, \boldsymbol{Q})$, on $H^{2 m}(X, \boldsymbol{C}) M_{x}$ has eigenvalues $x^{2 m}, x^{2 m-1} \bar{x}, \ldots, \bar{x}^{2 m}$. Now, we consider $\operatorname{Ker}\left(M_{x}^{2}+A M_{x}+B\right)$; if $v \in$ $\left(H^{2 m}(X, C)\right)^{p, q}$ we have that $\left(M_{x}^{2}+A M_{x}+B\right) v=\left(x^{2 p} \bar{x}^{2 q}+A x^{p} \bar{x}^{q}+B\right) v$. Observing that the equation $y^{2}+A y+B=0$ has solutions $y=x^{2 m}$ and $y=\bar{x}^{2 m}$ we obtain that

$$
V=\operatorname{Ker}\left(M_{x}^{2}+A M_{x}+B\right)=\left(H^{2 m}(X, \boldsymbol{C})\right)^{2 m, 0} \oplus\left(H^{2 m}(X, \boldsymbol{C})\right)^{0,2 m} .
$$

From [Ab1], the element $x \in \boldsymbol{Q}(x)$ acts as $x$ on the first copy of $W$ and as $\bar{x}$ on the second, and each copy contains $m(1,0)$ forms and $m(0,1)$ forms. Summarizing, we have the decomposition $H^{1}(X, \boldsymbol{C})=H_{+}^{1,0} \oplus H_{-}^{1,0} \oplus H_{+}^{0,1} \oplus H_{-}^{0,1}$ (where + and - mean the action as $x$ or as $\bar{x}$ respectively). From this decomposition, we have that the subspace $V_{\boldsymbol{Q}}$ such that $V_{\boldsymbol{Q}} \otimes_{\boldsymbol{Q}} \boldsymbol{C}=V$ is contained in $H^{2 m}(X, \boldsymbol{Q}) \cap H^{m, m}(X)$. Hence, using the $\boldsymbol{H}$-action on $V$ we obtain a $2 m+1$ dimensional representation contained in $H^{2 m}(X, \boldsymbol{Q}) \cap H^{m, m}(X)$.

## REFERENCES

[Ab1] S. Abdulali, Abelian varieities and the general Hodge conjecture, Compositio Math., 109, no. 3 (1997), 341-355.
[F-H] W. Fulton - J. Harris, Representation Theory, A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, (1991).
[H] C. F. Hermann, Some modular varieties related to $\boldsymbol{P}^{4}$, in: Abelian varieties (Egloffstein, 1993), de Gruyter, Berlin, (1995), 105-129.
[L] G. Lombardo, Abelian varieties of Weil type and Kuga-Satake varieties, Tohoku Math. J, 53 (2001), 453-466.
[vG] B. van Geemen, Kuga-Satake varieties and the Hodge conjecture, in: The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht (2000), 51-82.
[vG-V] B. van Geemen - A. Verra, Quaternionic Prym and Hodge classes, Topology, 42 (2003), 35-53.

Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10 10123 Torino. E-mail: lombardo@dm.unito.it

