BOLLETTINO UNIONE MATEMATICA ITALIANA

GIUSEPPE LOMBARDO

Hodge Classes and Abelian Varieties of Quaternionic Type

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **9-B** (2006), n.1, p. 247–256. Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2006_8_9B_1_247_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2006.

Hodge Classes and Abelian Varieties of Quaternionic Type.

GIUSEPPE LOMBARDO (*)

Sunto. – In questo articolo viene analizzato lo spazio delle classi di Hodge contenute nella coomologia intermedia di una varietà Abeliana di tipo quaternionico. Vengono costruite $\exists l_2$ -rappresentazioni che semplificano lo studio della congettura di Hodge in quanto l'agebricità di una classe implica quella di tutte le altre contenute nelle medesima rappresentazione.

Summary. – We obtain «coniugacy classes» (with respect to a $\exists l_2$ action) in the space of Hodge cycles in the middle cohomology of an Abelian variety of quaternionic type. The existence of such a class simplifies the study of the Hodge conjecture.

1. – Introduction.

The relationship between abelian varieties of Weil type, which provide an important test for the Hodge conjecture because of the existence of exceptional Hodge classes, and Kuga-Satake varieties was investigated by the present author in [L].

Now, we consider firstly the simple abelian varieties obtained (Poincarè's decomposition) from the Kuga-Satake varieties associated to K3-type Hodge structures of dimension 8 and 7 and we analyze in detail the Hodge classes contained in their middle cohomology. The endomorphism ring of these varieties contains a quaternion algebra, so, using tools of representation theory, we construct «conjugacy classes» of cycles with respect to a sl_2 action. The algebricity of one element contained in a class implies obviously the algebricity of the elements contained in the same class, and this provides a simplification in the study of the Hodge conjecture for these varieties.

Using the same techniques, in section 5 we study more generally Abelian varieties of quaternionic type in order to obtain «conjugacy classes» of Hodge

^(*) The author is supported by EAGER - European Algebraic Geometry Research training network, Contract number HPRN-CT-2000-00099 and by Progetto di Ricerca Nazionale COFIN 2002 «Geometria delle Varietà Algebriche».

cycles in their middle cohomology. The main result is Theorem 5, in which we obtain a sl_2 representation of dimension 2m + 1 contained in $B^m(X)$, where X is a 2m-dimensional abelian variety of quaternionic type.

The study of abelian varieties whose endomorphism ring is a definite quaternion algebra over Q is very interesting since can provide information about Hodge classes of Weil-type abelian varieties. Indeed, recently van Geemen and Verra studied families of abelian 8-folds of quaternionic type, called of spin (7)-type, and they showed that the Hodge conjecture for infinitely many families of abelian varieties of Weil type follows from the Hodge (2,2)-conjecture for such 8-folds (see [vG-V]).

2. – Preliminary notions.

2.1. Hodge structures.

A rational Hodge structure of weight k is a rational vectorspace V with a decomposition of its complexification $V \otimes \mathbf{C} = \bigoplus_{p+q=k} V^{p, q}$ where $V^{p, q}$ are complex vector subspaces such that $\overline{V^{p, q}} = V^{q, p}$. The type of a Hodge structure of weight k is the k + 1-tuple (dim $V^{k, 0}$, dim $V^{k-1, 1}, \ldots$, dim $V^{0, k}$), and in particular a weight-two Hodge structure is said to be of K3-type if it has type (1, n-2, 1).

Equivalently, a rational Hodge structure of weight k can be defined using representation theory as a couple (V, h) with V rational vectorspace and $h: \mathbb{C}^* \to GL(V \otimes \mathbb{R})$ rational representation such that $h(t) = t^k \cdot Id$ for all t in \mathbb{R} .

A rational polarized Hodge structure of weight k is a 3-tuple (V, h, ψ) where ψ is a polarization of the weight k Hodge structure (V, h), that is a bilinear map $\psi: V \times V \rightarrow Q$ such that

- (1) $\psi(h(z) v, h(z) w) = (z\overline{z})^k \psi(v, w) \forall v, w \in V \otimes \mathbf{R}, \forall z \in C^*$
- (2) $\psi(v, h(i) w) = \psi(w, h(i) v) \forall v, w \in V \otimes \mathbf{R}$
- (3) $\psi(v, h(i)v) > 0 \quad \forall v \in V \otimes \mathbf{R} \{0\}.$

2.2. Hodge classes.

Let V be a rational Hodge structure of even weight 2m, the space of its Hodge classes is $B(V) := V \cap V^{m, m}$. In case of smooth projective varieties X, we define the space of its (codimension p) Hodge cycles

$$B^{p}(X) := H^{2p}(X, Q) \cap H^{p, p}(X) \subset H^{2p}(X, C)$$

and the direct summand $Hdg(X) = \bigoplus_{p} B^{p}(X)$ is called the Hodge ring of X.

2.3. Hodge conjecture.

Let X be a smooth projective variety, there are defined cycle class maps

$$\psi_p \colon CH^p(X)_{\boldsymbol{Q}} \to H^{2p}(X, \boldsymbol{Q})$$
$$\sum a_i Z_i \quad \mapsto \quad \sum a_i [Z_i]$$

from the Chow group (with rational coefficients) $CH^p(X)_Q$ which associates to a subvariety $Z_i \subset X$ of codimension p its cohomology class $[Z_i]$. It is possible to show that the image of ψ_p is contained in $B^p(X)$, and we have the

HODGE (p, p) CONJECTURE. – The map $\psi_p: CH^p(X)_Q \to B^p(X)$ is surjective.

2.4. Kuga-Satake varieties.

Let (V, h, ψ) be a weight 2 polarized Hodge structure of K3-type and let $\{g_1, \ldots, g_n\}$ be a basis of V in which the symmetric bilinear form $Q = -\psi$ is given by $Q = d_1 X_1^2 + d_2 X_2^2 - d_3 X_3^2 - \ldots - d_n X_n^2$ $(d_i \in \mathbf{Q}_{>0})$. We consider the Clifford algebra $C_n = \frac{T^{\otimes V}}{I(Q)}$ quotient of the tensor algebra $T^{\otimes V}$ by the the two-sided ideal $I(Q) = \langle v \otimes v - Q(v) \rangle$, and in the following we write simply $a_1 \ldots a_k$ istead of $\overline{a_1 \otimes \ldots \otimes a_k}$. Let C_n^+ be the even Clifford subalgebra of C_n (i.e. the subalgebra generated by the class of tensor products of elements of V in even number) and let $J = \frac{1}{\sqrt{d_1 d_2}} g_1 g_2$. We have obviously $J^2 = -1$ and the left multiplication by J on C_n^+ defines a complex structure on $C_{n,R}^+ \stackrel{\text{def}}{=} C_n^+ \otimes_Q \mathbf{R}$. Let now $C_{n,Z}^+$ be the lattice of linear combinations of elements of the basis of C_n^+ with integer coefficients, the quotient

$$KS = \frac{(C_{n,R}^+, J)}{C_{n,Z}^+}$$

is a complex torus. This torus is an abelian variety since it admits the polarization

$$E(v, w) := Tr(\alpha(v) w)$$

where Tr(x) is the trace of the map «right multiplication on C_n^+ by the element $x \in C_n^+$ », ι is the canonical involution of the Clifford algebra and $\alpha \in C_n^+$ is an element such that we have $\iota(\alpha) = -\alpha$ and E(v, Jv) > 0 for all v. The abelian variety

is called the Kuga-Satake variety associated to the k3-type Hodge structure (V, h, ψ) .

3. - Hodge structure of dimension 8.

We start our analysis with a Lemma on Clifford algebras constructed from a 8-dimensional vector space.

LEMMA 3.1. – Let V be a 8-dimensional vector space and let $Q_8 = Hyp \oplus Hyp \oplus [a] \oplus [b] \oplus [c] \oplus [d]$ (a, b, c, $d \in Q_{>0}$) be a quadratic form on V, we have

$$C^+(Q_8) \cong gl_4(\boldsymbol{H}(\sqrt{abcd}))$$

where $H = Q \oplus Qi \oplus Qj \oplus Qk$ is a quaternion algebra with $i^2 = -ab$, $j^2 = -ac$, $k^2 = -a^2bc$, ij = k, jk = i, ki = j and $H(\sqrt{abcd}) = H \otimes_Q Q(\sqrt{abcd})$.

PROOF. – Let $\{e_1, \ldots, e_8\}$ be the diagonal basis for Q_8 such that $Q_8 = \text{diag}(2, -2, 2, -2, a, b, c, d)$; the center of C_8^+ is generated by the element $z = e_1 e_2 \ldots e_8$ which satisfies

$$z^{2} = (-1)^{7+6+5+4+3+2+1}(2)(-2)(2)(-2) abcd = 16 abcd$$

Using the properties of Clifford algebras, we can show that

$$C_8^+ \cong (C_6^+ \oplus e_7 C_6^-) \otimes_{\boldsymbol{Q}} \boldsymbol{Q}(\sqrt{z}). \quad (*)$$

Moreover, we have

$$C_{6}^{+} = C_{4}^{+} \oplus e_{5}C_{4}^{-} \oplus e_{6}C_{4}^{-} \oplus e_{5}e_{6}C_{4}^{+}$$
$$C_{6}^{-} = C_{4}^{-} \oplus e_{5}C_{4}^{+} \oplus e_{6}C_{4}^{+} \oplus e_{5}e_{6}C_{4}^{-}.$$

We observe that

 $e_7 C_4^- = e_5 e_6 (e_5 e_6 e_7 C_4^-), \quad e_6 C_4^- = e_5 e_7 (e_5 e_6 e_7 C_4^-), \quad e_5 C_4^- = e_6 e_7 (e_5 e_6 e_7 C_4^-)$ (multiplication by constants does not change linear spaces), therefore

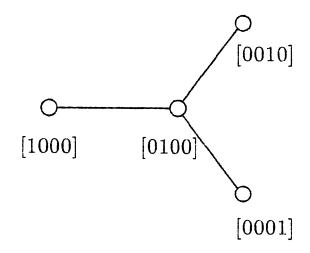
$$\begin{split} C_8^+ &= C_4^+ \oplus e_5 C_4^- \oplus e_6 C_4^- \oplus e_5 e_6 C_4^+ \oplus e_7 (C_4^- \oplus e_5 C_4^+ \oplus e_6 C_4^+ \oplus e_5 e_6 C_4^-) \\ &= (C_4^+ \oplus e_5 e_6 e_7 C_4^-) \oplus e_5 e_6 (C_4^+ \oplus e_5 e_6 e_7 C_4^-) \oplus e_5 e_7 (C_4^+ \oplus e_5 e_6 e_7 C_4^-) \\ &\oplus (e_6 e_7) (C_4^+ \oplus e_5 e_6 e_7 C_4^-) \\ &= (C_4^+ \oplus e_5 e_6 e_7 C_4^-) \oplus e_5 e_6 (C_4^+ \oplus e_5 e_6 e_7 C_4^-) \oplus e_5 e_7 (C_4^+ \oplus e_5 e_6 e_7 C_4^-) \\ &\oplus (-a e_6 e_7) (C_4^+ \oplus e_5 e_6 e_7 C_4^-). \end{split}$$

Let $B = C_4^+ \oplus e_5 e_6 e_7 C_4^-$, from (*) one has

$$C_8^+ \cong (B \oplus e_5 e_6 B \oplus e_5 e_7 B \oplus -a e_6 e_7 B) \otimes \mathbf{Q}(\sqrt{abcd}).$$

Moreover, $B \cong gl_4(\mathbf{Q})$ (see [L, Thm 6.2]). The symbols $i = e_6 e_5$, $j = e_7 e_5$ and $k = -ae_6 e_7$ satisfy the rules of a quaternion algebra, therefore we have $C^+(\mathbf{Q}_8) \cong gl_4(\mathbf{H}(\sqrt{abcd}))$ as required.

We consider now the Lie algebra $\mathfrak{so}_8(C)$, the Dynkin diagram associated to such an algebra is D_4



Dynkin diagram D_4

So, we can denote by [0010] and [0001] be the two half-spin representations od $\Im o_8(C)$ (see [F-H] for details) and we have

LEMMA 3.2. – Let (V, h, ψ) be a general weight-2 rational Hodge structure of dimension 8 and K3-type with polarization

 $\psi \cong Hyp \oplus Hyp \oplus [a] \oplus [b] \oplus [c] \oplus [d] \quad (a, b, c, d \in \mathbf{Q}_{>0}).$

If abcd = 1 the associated Kuga-Satake variety is isogenous to $(A_+ \times A_-)^4$ where A_{\pm} are not-isogenous abelian varieties of dimension 8 with $H^1(A_{\pm}, \mathbb{C})$ isomorphic respectively to $[0010]^2$ or to $[0001]^2$.

PROOF. – Let KS be the Kuga-Satake variety associated to (V, h, ψ) and let q = abcd. It has dimension $dim_C KS = \frac{2^{8-1}}{2} = 64$ and, since $End(KS) \cong$ $C_8^+ \cong gl_4(\mathbf{H}(\sqrt{q}))$, if q = 1 we obtain $C_8^+ \cong gl_4(\mathbf{H} \oplus \mathbf{H})$. Hence, by Poincaré's theorem we have $KS \sim X^4$ with $X \sim A_+ \times A_-$, where A_+ and A_- are not isogenous abelian varieties of dimension $dim_C A_{\pm} = \frac{2^6}{2^2 2} = 8$. Moreover, $H^1(KS, \mathbf{C}) \cong C_8^+(\psi_C)$ and using the isomorphism described in [F-H, p. 305] we have $H^1(KS, \mathbf{C}) \cong gl([0010]) \oplus gl([0001])$ (we recall that dim[0010] = dim[0001] = 8). Therefore $H^1(KS, \mathbf{C}) \cong [0010]^8 \oplus [0001]^8$ and, from Poincaré's decomposition, we have that $H^1(A_+ \times A_-, \mathbf{C}) \cong [0010]^2 \oplus [0001]^2$ so $H^1(A_+, \mathbf{C}) \cong [0010]^2$ and $H^1(A_-, \mathbf{C}) \cong [0001]^2$. Indeed, we cannot have $H^1(A_+, \mathbf{C}) \cong H^1(A_-, \mathbf{C}) \cong [0010] \oplus [0001]$ since it implies $A_+ \sim A_-$ and these varieties are not isogenous from Poincaré's theorem.

We can now prove the following

THEOREM 3.3. – Let A_+ and A_- be the simple Abelian varieties occurring in the decomposition of the Kuga-Satake variety associated to a general 8-dimensional K3 Hodge structure (V, h, ψ) . For each A_{\pm} there is a 9-dimensional \mathfrak{Sl}_2 representation of Hodge cycles contained in $H^8(A_{\pm}, \mathbf{Q}) \cap$ $H^{4, 4}(A_{\pm})$.

PROOF. – We consider the variety A_+ (the situation is obviously analoguous for A_-). Writing $H^1(A_+, \mathbb{C}) \cong [0010]_a \oplus [0010]_b$ in order to distinguish the isomorphic copies, we have a SL_2 -action (or, equivalently, a $\exists l_2$ -action) on $H^1(A_+, \mathbb{C}) \cong [0010]_a \oplus [0010]_b$. The element $H = \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \in SL_2$ acts as t on $[0010]_a$ and as t^{-1} on $[0010]_b$. We can extend this action to $\wedge^n H^1(A_1, \mathbb{C})$ in the obvious way and we consider the one-dimensional space $\wedge^8 [0010]_a \cong$ [0000], the element H acts on this space as t^8 . Using repeatedly the element $Y = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in \exists l_2$ on $\wedge^8 [0010]_a$, since the weights decrease by two under the action of Y we obtain a $\exists l_2$ -representation of dimension 9. This representation is unique (it is maximal), therefore it must be defined over \mathbb{Q} (that is, there exists a 9-dimensional subspace contained in $H^8(X, \mathbb{Q})$ such that the representation is the \mathbb{C} -tensorization of this subspace). Since (V, h, ψ) is of type K3, on $V_{\mathbb{C}}$ the matrix of $h: \mathbb{C}^* \to GL(V_{\mathbb{R}})$ can be diagonalized as h(z) =diag $(z^2, z\bar{z}, z\bar{z$

Let L_i be the functionals defined by $L_i(\text{diag}(a_{jj})) = a_{ii}$ (see [F-H] p. 163), we have

$$L_i(h(z)) = \begin{cases} z^2 & i = 1 \\ 1 & i = 2, 3, 4 \end{cases}$$

In order to understand if the obtained $\Im l_2$ representation is contained in $B^4(A_1)$ we have to determine if its elements are contained in $H^{4, 4}(A_1)$. We observe that the weights of the half-spin representation [0010] are $\frac{1}{2}(\pm L_1 \pm L_2 \pm L_3 \pm L_4)$ with an even number of minus. We can compute the matrix of the representation $\tilde{h}: S^1 \rightarrow GL([0010])$ using h and these weights

$$\frac{1}{2}(L_1 + L_2 + L_3 + L_4)(h(z)) = \sqrt{z^2 \cdot 1 \cdot 1 \cdot 1} = z$$

$$\vdots$$

$$\frac{1}{2}(-L_1 - L_2 - L_3 - L_4)(h(z)) = \sqrt{z^{-2} \cdot 1 \cdot 1 \cdot 1} = z^{-1} = \overline{z}$$

and we obtain $\tilde{h}(z) \cong (z, z, z, z, \overline{z}, \overline{z}, \overline{z}, \overline{z}, \overline{z})$. Therefore, $\wedge^{8}[0010]$ has type (4, 4) and the whole representation is contained (by conjugation) in $B^{4}(A_{1}) = H^{8}(A_{1}, \mathbf{Q}) \cap H^{4, 4}(A_{1})$. Looking at the SL_{2} -action, it is easy to find the spaces in which the cycles are contained and the situation can be summarized as follows

weights	spaces	number of cycles
t^8	$\wedge^{8}[0010]_{a}$	1
t^{6}	$\wedge^{7}[0010]_{a} \otimes [0010]_{b}$	1
t^4	$\wedge^6 [0010]_a \otimes \wedge^2 [0010]_b$	1
t^2	$\wedge^5[0010]_a \otimes \wedge^3[0010]_b$	1
t^{0}	$\wedge^4 \llbracket 0010 brack_a \otimes \wedge^4 \llbracket 0010 brack_b$	1
t^{-2}	$\wedge^3 [0010]_a \otimes \wedge^5 [0010]_b$	1
t^{-4}	$\wedge^2 [0010]_a \otimes \wedge^6 [0010]_b$	1
t^{-6}	$[0010]_a \otimes \wedge^7 [0010]_b$	1
t^{-8}	$\wedge^8[0010]_b$	1.

Moreover, we observe that the cycles are the [0000] representations (since are invariants) and that (by explicit computation) there are 10 [0000] representations contained in $H^8(A_1, \mathbf{Q}) \cap H^{4, 4}(A_1)$. The last cycle necessarily must be contained in $\wedge^4 [0010]_a \otimes \wedge^4 [0010]_b$ otherwise, using the SL_2 -action, the number of cycles necessarily increases.

4. – Hodge structure of dimension 7.

Now we consider Kuga-Satake varieties constructed from a 7-dimensional K3-type Hodge sructure. We show that these varieties can be decomposed in Abelian 8-folds of quaternionic type and, repeting the same argument of the

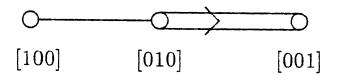
previous section, we compute the number of $\mathfrak{S}l_2$ representations contained in the space of their codimension 4 Hodge cycles. We obtain the following

THEOREM 4.1. – Let (V, h, ψ) be a general weight 2 polarized Hodge structure of dim V = 7 and dim $V^{2,0} = 1$ with polarization $\psi \cong \text{Hyp} \oplus \text{Hyp} \oplus [a] \oplus [b] \oplus [c]$ $(a, b, c \in \mathbf{Q}_{>0})$, the associated Kuga-Satake variety is isogenous to four copies of an Abelian variety A of dimension 8. The space of codimension 4 Hodge cycles of A contains one 9-dimensional, one 5-dimensional and two 1-dimensionals $\exists l_2$ -representations.

PROOF. – The matrix of the representation $h: S^1 \rightarrow GL(V_R)$ can be diagonalized on V_C as $h(z) = \text{diag}(z^2, 1, 1, z^{-2}, 1, 1, 1) \in SO_7(C)$ (see Lemma 3.2), therefore

$$L_i(h(z)) = \begin{cases} z^2 & i = 1\\ 1 & i = 2, 3 \end{cases}$$

(see 3.2). From the isomorphism $C^+ \cong gl_4(H)$ (analogous to Lemma 3.1, see also [vG]), we have the decomposition $KS \sim A^4$ where A is a simple Abelian variety of dimension $\dim_C A = 8$ with End (A) = H. In similar way to Lemma 3.2, $C^+(\psi_C) \cong gl(S)$ where S is the spin representation of $\mathfrak{S}o_7(C)$ which has dimension 8 and weights $\frac{1}{2}(\pm L_1 \pm L_2 \pm L_3)$. The Dynkin diagram associated to $\mathfrak{S}o_7(C)$ is B_3 (see [F-H])



Dynkin diagram B_3

therefore we can write S = [001]. Now, we repeat the argument of 3.3; the Hodge structure on this space is given by $\tilde{h}(z) = \text{diag}(z, z, z, z, \overline{z}, \overline{z}, \overline{z}, \overline{z}, \overline{z})$, $H^1(A, \mathbb{C}) \cong [001]_a \oplus [001]_b$ and we find a SL_2 -representation of dimension 9 in $H^8(A, \mathbb{Q}) \cap H^{4, 4}(A)$ starting from $\wedge^8[001] = [000]$ which has type (4, 4).

We can also compute (with the aid of the computer program «Lie») the number of the [000] representations in each component of

/	^۲	$[001]_{a}$,⊕[$[001]_b$	and	we	obtain
---	--------------	-------------	-----	-----------	-----	----	--------

weights	spaces	number of cycles
t^8	$\wedge^{8}[001]_{a}$	1
t^{6}	$\wedge^7 [001]_a \otimes [001]_b$	1
t^{4}	$\wedge^6[001]_a \otimes \wedge^2[001]_b$	2
t^2	$\wedge^5[001]_a^{"}\otimes\wedge^3[001]_b^{"}$	2
t^{0}	$\wedge^4[001]_a \otimes \wedge^4[001]_b$	4
t^{-2}	$\wedge^3[001]_a \otimes \wedge^5[001]_b$	2
t^{-4}	$\wedge^2 [001]_a \otimes \wedge^6 [001]_b$	2
t^{-6}	$[001]_a \otimes \wedge^7 [001]_b$	1
t^{-8}	$\wedge^{8}[001]_{b}$	1.

Obviously, we have the following situation

- (1) one 9-dimensional representation generated by $\wedge^{8}[001]$,
- (2) one 5-dimensional representation generated by the cycle contained in $\wedge^{6}[001]_{a} \otimes \wedge^{2}[001]_{b}$ and not contained in the previous $\Im l_{2}$ representation
- (3) two 1-dimensional representations contained in $\wedge^4 [001]_a \otimes \wedge {}^4 [001]_b$.

REMARK 4.2. – We observe that, starting from a 6-dimensional K3-type Hodge structure, we obtain (see [L]) that $KS \sim A^4$ where A is an Abelian fourfold of Weil type. The endomorphism ring of A is an imaginary quadratic field, and $H^1(A, C) \cong [001] \oplus [010]$ where [001] and [010] are the half-spin representations of $\mathfrak{s}_{0_6}(C)$. These representations are not isomorphic, so in this case we don't have a \mathfrak{s}_{l_2} -action and we cannot find conjugacy classes. A direct computation of the [000]-representations shows that we have 3 cycles, $\wedge^4[010]$, $\wedge^4[001]$ and a third cycle contained in $\wedge^2[010] \otimes \wedge^2[001]$ (this cycle is $[E^2]$ where E denotes the polarization of the variety).

5. – Abelian Varieties of quaternionic type.

Let now X be an Abelian variety of dimension 2m with $\operatorname{End}_{Q}(X)$ a totally definite quaternion algebra H. From [Ab1] we have that the Mumford-Tate group of X is isomorphic to $SO(2m, \mathbb{C})$ and $H^{1}(X, \mathbb{C}) = W \oplus W$ where W is the standard representation of $SO(2m, \mathbb{C})$. Hence, as is 3.3, we have a \mathfrak{Sl}_{2} -representation of Hodge cycles corresponding to the action of H. Now, we study this situation more in detail and we prove the following

THEOREM 5.1. – Let X be an Abelian variety of type III of dimension 2m. The space of codimension m Hodge cycles contains a \mathfrak{Sl}_2 -representation of dimension 2m + 1. GIUSEPPE LOMBARDO

PROOF. – Let $x \in H$ be a generical element of H with non trivial imaginary part, Q(x) is a imaginary quadratic field therefore there are $a, b \in Q$ such that $x^2 + ax + b = 0$ and $A, B \in Q$ such that $x^{4m} + Ax^{2m} + B = 0$. Let M_x be the action of x on $H^{2m}(X, Q)$, on $H^{2m}(X, C)$ M_x has eigenvalues $x^{2m}, x^{2m-1}\overline{x}, ..., \overline{x}^{2m}$. Now, we consider Ker $(M_x^2 + AM_x + B)$; if $v \in$ $(H^{2m}(X, C))^{p, q}$ we have that $(M_x^2 + AM_x + B)v = (x^{2p}\overline{x}^{2q} + Ax^p\overline{x}^q + B)v$. Observing that the equation $y^2 + Ay + B = 0$ has solutions $y = x^{2m}$ and $y = \overline{x}^{2m}$ we obtain that

$$V = \operatorname{Ker} \left(M_x^2 + AM_x + B \right) = \left(H^{2m}(X, C) \right)^{2m, 0} \oplus \left(H^{2m}(X, C) \right)^{0, 2m}$$

From [Ab1], the element $x \in Q(x)$ acts as x on the first copy of W and as \overline{x} on the second, and each copy contains m(1, 0) forms and m(0, 1) forms. Summarizing, we have the decomposition $H^1(X, \mathbb{C}) = H^{1, 0}_+ \oplus H^{1, 0}_- \oplus H^{0, 1}_+ \oplus H^{0, 1}_-$ (where + and - mean the action as x or as \overline{x} respectively). From this decomposition, we have that the subspace V_Q such that $V_Q \otimes_Q \mathbb{C} = V$ is contained in $H^{2m}(X, \mathbb{Q}) \cap H^{m, m}(X)$. Hence, using the H-action on V we obtain a 2m + 1 dimensional representation contained in $H^{2m}(X, \mathbb{Q}) \cap H^{m, m}(X)$.

REFERENCES

- [Ab1] S. ABDULALI, Abelian varieities and the general Hodge conjecture, Compositio Math., 109, no. 3 (1997), 341-355.
- [F-H] W. FULTON J. HARRIS, Representation Theory, A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, (1991).
- [H] C. F. HERMANN, Some modular varieties related to P⁴, in: Abelian varieties (Egloffstein, 1993), de Gruyter, Berlin, (1995), 105-129.
- [L] G. LOMBARDO, Abelian varieties of Weil type and Kuga-Satake varieties, Tohoku Math. J, 53 (2001), 453-466.
- [vG] B. VAN GEEMEN, Kuga-Satake varieties and the Hodge conjecture, in: The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht (2000), 51-82.
- [vG-V] B. VAN GEEMEN A. VERRA, Quaternionic Prym and Hodge classes, Topology, 42 (2003), 35-53.

Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10 10123 Torino. E-mail: lombardo@dm.unito.it

Pervenuta in Redazione

il 13 novembre 2003