Grzegorz, Nowak: 
Inverse results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces
 Bollettino dell'Unione Matematica Italiana Serie 8 9-B (2006), fasc. n.1, p. 183-195,  (English)
pdf (407 Kb), djvu (112 Kb).  | MR 2204906  | Zbl 1150.41016 
Sunto
Consideriamo le modificazioni di tipo Kantorovich e Durrmeyer degli operatori generalizzati di Favard e proviamo i teoremi inversi di approssimazione per funzioni \(f\) tali che \(w_{2m} f \in L^p (R)\), dove \(1\leq p \leq \infty\) e \(w_{2m}(x)=(1+ x^{2m})^{-1}\), $m \in N_0$.
Referenze Bibliografiche
[2] 
M. BECKER, 
Inverse theorems for Favard operators in polynomial weight spaces,
Ann. Soc. Math. Pol., Ser. I: Comment Math., 
22 (
1981), 165-173. | 
MR 641432 | 
Zbl 0508.41017[4] 
P.L. BUTZER - 
R.J. NESSEL, 
Fourier Analysis and Approximation, Vol. 
I, 
Academic Press, New York and London, 
1971. | 
MR 510857 | 
Zbl 0217.42603[5] 
Z. DITZIAN - 
V. TOTIK, 
Moduli of Smoothness, 
Springer Series in Computational Mathematics, Vol. 
9, 
Springer-Verlag, New York Inc., 
1987. | 
fulltext (doi) | 
MR 914149[6] 
J. FAVARD, 
Sur les multiplicateurs d'interpolation, 
J. Math. Pures Appl., 
23 (
1944),219-247. | 
MR 15547 | 
Zbl 0063.01317[7] 
W. GAWRONSKI - 
U. STADTMULLER, 
Approximation of continuous functions by generalized Favard operators, 
J. Approx. Theory, 
34 (
1982), 384-396. | 
fulltext (doi) | 
MR 656639 | 
Zbl 0484.41019[8] 
G. NOWAK, 
Direct results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces. 
Demonstratio Math., 
36 (
2003), 879-891. | 
MR 2018708 | 
Zbl 1044.41011[9] 
G. NOWAK - 
P. PYCH-TABERSKA, 
Approximation properties of the generalized Favard-Kantorovich operators, 
Ann. Soc. Math. Pol., Ser. I: Comment. Math., 
39 (
1999), 139-152. | 
MR 1739024 | 
Zbl 0970.41014[10] 
G. NOWAK - 
P. PYCH-TABERSKA, 
Some properties of the generalized Favard Durrmeyer operators, 
Funct. et Approximatio, Comment. Math., 
29 (
2001), 103-112. | 
MR 2135601[11] 
P. PYCH-TABERSKA, 
On the generalized Favard operators, 
Funct. Approximatio, Comment. Math., 
26 (
1998), 256-273. | 
MR 1666626 | 
Zbl 0920.41009