bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Kapanadze, D. and Schulze, B.-W:
Asymptotics of potentials in the edge calculus
Bollettino dell'Unione Matematica Italiana Serie 8 9-B (2006), fasc. n.1, p. 145-182, (english)
pdf (570 Kb), djvu (386 Kb). | MR 2204905 | Zbl 1118.58014

Sunto

I problemi al contorno su varieta con singolarità coniche o di tipo edges (spigoli) contengono operatori potenziali come operatori di traccia e operatori di Green, i quali svolgono lo stesso ruolo dei corrispondenti operatori nel calcolo pseudo-differenziale per problemi al contorno su varietà lisce. Esiste allora uno specifico sviluppo asintotico di questi operatori nell'intorno delle singolarita. In questo lavoro caratteriziamo gli operatori potenziali in termini di azioni di operatori pseudodifferenziali di tipo conico o di tipo edge, su densità che sono supportate da sottovarietà che hanno anch'esse singolarità coniche e di tipo edge. Attravevso un biprodotto mostriamo che tali potenziali sono operatori continui tra spazi di Sobolev di tipo conico o di tipo edge e sottospazi con asintotiche.
Referenze Bibliografiche
[1] S. AGMON - A. DOUGLIS - L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, II, Comm. Pure Appl. Math., 12 (1959), 623-727, 17 (1964), 35-92. | fulltext (doi) | MR 162050 | Zbl 0093.10401
[2] L. BOUTET DE MONVEL, Boundary problems for pseudo-differential operators, Acta Math., 126 (1971), 11-51. | fulltext (doi) | MR 407904 | Zbl 0206.39401
[3] O. CHKADUA - R. DUDUCHAVA, Asymptotics of functions represented by potentials, Russian Journal of Mathem. Physics, 7 (2000), 15-47. | MR 1832772 | Zbl 1065.35508
[4] J. B. GIL - B.-W. SCHULZE - J. SEILER, Cone pseudodifferential operators in the edge symbolic calculus, Osaka J. Math., 37 (2000), 219-258. | MR 1750278
[5] M. DAUGE, Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, 1988. | fulltext (doi) | MR 961439 | Zbl 0668.35001
[6] D. KAPANADZE - B.-W. SCHULZE, Crack theory and edge singularities, Kluwer Academic Publ., Dordrecht, 2003. | fulltext (doi) | MR 2023308 | Zbl 1053.58010
[7] N. DINES - B.-W. SCHULZE, Mellin-edge-representation of elliptic operators, Math. Meth. in the Applied Sci. (to appear). | fulltext (doi) | MR 2182481 | Zbl 1190.58021
[8] V.A. KONDRATYEV, Boundary value problems for elliptic equations in domains with conical points, Trudy Mosk. Mat. Obshch., 16 (1967), 209-292. | MR 226187
[9] E. SCHROHE - B.-W. SCHULZE, A symbol algebra for pseudodifferential boundary value problems on manifolds with edges, Differential Equations, Asymptotic Analysis, and Mathematical Physics, Math. Research, vol. 100 (Akademie Verlag, Berlin, 1997), 292-324. | MR 1456200 | Zbl 0882.35144
[10] E. SCHROHE - B.-W. SCHULZE, Boundary value problems in Boutet de Monvel's calculus for manifolds with conical singularities I, Advances in Partial Differential Equations (Pseudo-differential calculus and Mathematical Physics) (Akademie Verlag, Berlin, 1994), 97-209. | MR 1287666
[11] E. SCHROHE - B.-W. SCHULZE, Boundary value problems in Boutet de Monvel's calculus for manifolds with conical singularities II, Advances in Partial Differential Equations (Boundary Value Problems, Schrodinger Operators, Deformation Quantization) (Akademie Verlag, Berlin, 1995), 70-205. | MR 1389012 | Zbl 0847.35156
[12] B.-W. SCHULZE, Pseudo-differential operators on manifolds with singularities, North-Holland, Amsterdam, 1991. | MR 1142574
[13] B.-W. SCHULZE, Boundary value problems and singular pseudo-differential operators, J. Wiley, Chichester, 1998. | MR 1631763
[14] B.-W. SCHULZE, Crack theory with singularities at the boundary, Pliska Stud. Math. Bulgar., 15 (2003), 21-66. | MR 2071683
[15] B.-W. SCHULZE - J. SEILER, The edge algebra structure of boundary value problems, Annals of Global Analysis and Geometry, 22 (2002), 197-265. | fulltext (doi) | MR 1925589 | Zbl 1024.58011
[16] B.-W. SCHULZE - N.N. TARKHANOV, Green pseudodifferential operators on a manifold with edges, Comm. Partial Differential Equations, 23, 1-2 (1998), 171-200. | fulltext (doi) | MR 1608512
[17] J. SEILER, The cone algebra and kernel characterization of Green operators, Advances in Partial Differential Equations (Approaches to Singular Analysis) (J. Gil, D. Grieser, and Lesch M., eds.), Oper. Theory Adv. Appl. (Birkhäuser, Basel, 2001), 1-29. | MR 1827169 | Zbl 0994.35128

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali