Caire, Luisella and Cerruti, Umberto: 
 Questo numero è primo? Sì, forse, dipende ...
 Bollettino dell'Unione Matematica Italiana Serie 8 9-A (2006) —La Matematica nella Società e nella Cultura, fasc. n.3-1, p. 449-481, Unione Matematica Italiana (Italian)
pdf (343 Kb), djvu (270 Kb).  | MR2309899  | Zbl 1195.00012 
Sunto
In this paper we outline some algorithms answering the question if a given number is prime: primally criteria, that are deterministic (they positively reply yes or not) and unconditional, but inefficient (technically not polynomial-time); algoritms that are efficient, but only probabilistic (to say they give absolute certainty if they answer not, whereas they only give a low boundary of the probability for the number to be prime if they answer yes); algorithms that are the same time deterministic and efficient, but conditioned, that is they depend on the extended Riemann conjecture(yet to be proved).
Referenze Bibliografiche
[1] 
L. M. ADLEMAN - 
C. POMERANCE - 
R. S. RUMELY, 
On distinguishing prime numbers from composite numbers, 
Annals of Mathematics, 
117 (
1983), 173-206. | 
Zbl 0526.10004[2] A. N. AGADZHANOV, Unusual infinity of prime numbers, URL: http://citeseer.ifi.unizh.ch/agadzhanov01unusual.html, 2001
[3] 
M. AGRAWAL - 
N. KAYAL - 
N. SAXENA, 
PRIMES is in P, 
Annals of Mathematics, 
160 (
2004), 781-793. | 
fulltext (doi) | 
MR 2123939[5] 
R. BAILLIE - 
S. S. WAGSTAFF, Jr., 
Lucas pseudoprimes, 
Mathematics of Computation, 
35 (
1980), 1391-1417. | 
fulltext (doi) | 
MR 583518[6] D. J. BERNSTEIN, Distinguishing prime numbers from composite numbers: the state of the art in 2004, URL: http://cr.yp.to/papers.html#prime2004 (2004).
[7] 
J. BRILLHART - 
D. H. LEHMER - 
J. L. SELFRIDGE, 
New Primality Criteria and Factorizations for $2^m \pm 1$, 
Mathematics of Computations, 
29 (
1975), 620-647. | 
fulltext (doi) | 
MR 384673 | 
Zbl 0311.10009[10] A. LANGUASCO - A. ZACCAGNINI, Introduzione alla Crittografia, Hoepli Editore, Milano, 2004.
[12] E. LUCAS, Sur la recherche des grands nombres premiers, Association Française pour l'Avancement des Sciences, Comptes Rendus, 5 (1876), 61-68.
[14] 
S. MÜLLER, 
On the combined Fermat/Lucas probable prime test, in 
Crypto and Coding '99, 
Lecture Notes in Computer Science 1746, 
Springer-Verlag 1999, 222-235. | 
fulltext (doi) | 
MR 1861844 | 
Zbl 1017.11068[15] 
H. C. POCKLINGTON, 
Determination of the prime or composite nature of large numbers by Fermat's theorem, 
Proceedings of the Cambridge Philosophical Society, 
18 (
1914), 29-30. | 
Zbl 45.0332.12[16] C. POMERANCE, Primality testing: variations on a theme of Lucas, in corso di pubblicazione su Proceedings of MSRI Workshop, J. Buhler and P. Stevenhagen, eds. 2005, URL: http://cm.bell-labs.com/cm/ms/who/carlp/primalitytalk5.ps
[17] 
M. O. RABIN, 
Probabilistic Algorithms, in '
Algorithms and Complexity: new directions and recent results', 
J. F. Traub Edt., 
Academic Press, 
1976, 21-39. | 
MR 464678