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Bollettino U. M. I.
(8) 8-B (2005), 639-651

Some Applications of the Pascal Matrix to the Study
of Numerical Methods for Differential Equations (*).

LIDIA ACETO (**)

Sunto. – In questo articolo analizziamo i legami tra la matrice di Pascal e una nuova
classe di metodi numerici per equazioni differenziali ottenuti come generalizzazio-
ne dei metodi di Adams. In particolare, proveremo che i metodi in tale classe pos-
sono essere utilizzati per risolvere problemi di tipo stiff in quanto le regioni di as-
soluta stabilità ad essi associate contengono il semipiano negativo.

Summary. – In this paper we introduce and analyze some relations between the Pascal
matrix and a new class of numerical methods for differential equations obtained
generalizing the Adams methods. In particular, we shall prove that these methods
are suitable for solving stiff problems since their absolute stability regions contain
the negative half complex plane.

1. – Introduction.

The Adams-Moulton methods have been used in the past mainly for appro-
ximating the solution of non-stiff problems (see, for example, [7,11]). The rea-
son is that, with the exception of the trapezoidal rule, they have bounded abso-
lute stability regions whose sizes decrease as the order increases. Recently,
the boundary value methods (BVMs) approach to deal with the numerical ap-
proximation of differential problems has evidenced that some generalization
of Adams methods can be successfully used also for solving stiff problems.
Such approach consists in replacing a given continuous initial value problem
with a k-step linear multistep formula, associated with boundary conditions in-
stead of initial ones, as traditionally done. The use of a discrete boundary
value problem is justified by the fact that a k-step linear multistep formula ge-

(*) Work supported by GNCS-INdAM.
(**) Comunicazione presentata a Milano in occasione del XVII Congresso U.M.I.
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n e r a t e s a kt h o r d e r d i s c r e t e p r o b l e m , w h o s e p a r t i c u l a r s o l u t i o n i s o b t a i n e d
b y f i x i n g k i n d e p e n d e n t c o n d i t i o n s . S i n c e o n l y o n e o f t h e m i s p r o v i d e d b y
t h e c o n t i n u o u s p r o b l e m , t h e r e i s t h e f r e e d o m o f c h o o s i n g t h e k21 re m a i -
n i n g v a l u e s . T h e B V M s a p p r o a c h s p l i t s s u c h a d d i t i o n a l c o n d i t i o n s a t t h e b e -
g i n n i n g a n d a t t h e e n d o f t h e i n t e r v a l . T h i s l e a d s a n i m p r o v e m e n t o f t h e s t a -
b i l i t y p r o p e r t i e s o f t h e l i n e a r m u l t i s t e p f o r m u l a ( s e e [ 6 ] a n d r e f e r e n c e s t h e -
r e i n ) . A s a ma t t e r o f f a c t , s o m e c l a s s e s o f B V M s o b t a i n e d f r o m a ge n e r a l i -
z a t i o n o f A d a m s m e t h o d s , n a m e l y t h e R e v e r s e A d a m s m e t h o d s [ 4 ] ( u p t o o r -
d e r f o u r ) a n d t h e G A M s [ 5 ] , h a v e s t a b i l i t y r e g i o n s c o n t a i n i n g t h e n e g a t i v e
h a l f c o m p l e x p l a n e . F o r t h i s r e a s o n , s u c h m e t h o d s a r e s u i t a b l e f o r a p p r o x i -
m a t i n g t h e s o l u t i o n o f s t i f f p r o b l e m s . T h e c o d e G A M [ 8 , 9 ] , o n e o f t h e c o d e s
f o r s o l v i n g s t i f f i n i t i a l v a l u e p r o b l e m s , i s i n f a c t b a s e d o n s o m e m e t h o d s i n
t h e c l a s s o f G A M s .

T h e a i m o f t h i s p a p e r i s t o i n t r o d u c e a n d t o a n a l y z e t h e p r o p e r t i e s o f a
n e w c l a s s o f B V M s , o b t a i n e d a s a ge n e r a l i z a t i o n o f A d a m s m e t h o d s a s w e l l ,
a n d h a v i n g a n o d d n u m b e r o f s t e p s . T h i s w i l l b e t h e s u b j e c t o f S e c t i o n 3 . S o -
m e n u m e r i c a l e x p e r i m e n t s , c o m p a r i n g t h e p e r f o r m a n c e o f t h e p r e s e n t e d
n e w m e t h o d s w i t h o t h e r e x i s t i n g o n e s , w i l l b e p r e s e n t e d i n S e c t i o n 4 . B e f o r e
t h a t , i n t h e n e x t s e c t i o n t h e f a m i l y o f B V M s t h a t g e n e r a l i z e s t h e c l a s s i c a l
A d a m s m e t h o d s i s e x a m i n e d , a l o n g w i t h t h e e x t e n s i o n o f t h e c l a s s i c a l r e s u l -
t s a b o u t s t a b i l i t y .

2. – The family of generalized Adams methods.

The family of generalized Adams methods (fGAMs) contains k-step
methods defined by

yn1 j 2yn1 j21 4h !
i40

k

b i
( j) fn1 i , j� ]1, 2 , R , k( ,(1)

where yn is the approximation to the solution at the grid points tn 4 t0 1nh ,
n40, R , N , h4 (T2 t0 ) /N and fn 4 f (tn , yn ).

For a fixed j , the coefficients ]b i
( j) ( are uniquely derived by imposing that

the method is of maximum order k11. This requirement is equivalent to deri-
ve such parameters as solution of the linear system [6]

W(0) b ( j) 4v(2)
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and b ( j) 4 (b 0
( j) , b 1

( j) , R , b k
( j) )T . By introducing

j(x) 4 (1 , x , x 2 , R , x k )T ,(3)

the vector v can be written as v4 s
j21

j

j(t) dt . Moreover, by considering the

change of variable t4x1 j21, it becomes

v4s
0

1

j(x1 j21) dx .(4)

Such relation, when substituted in (2), leads to

b ( j) 4W(0)21s
0

1

j(x1 j21) dx .(5)

In order to get an analytic expression of such solution, we need to use the Pa-
scal matrix, whose entries are

Pij 4
.
/
´

gi
j
h

0

for iF j

otherwise

i , j40, 1 , R , k ,

and some of its properties. It is an easy matter to check that

Pj(x) 4j(x11) .

Thus, the Vandermonde matrix based on the distinct values x , x11, R , x1

k , i.e.,

W(x) 4 (j(x) j(x11) j(x12) R j(x1k))(6)
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becomes

W(x) 4P x (j(0) j(1) j(2) R j(k))

or, equivalently,

W(x) 4P x W(0) .

By observing that W(x) es21 4j(x1s21), where es21 denotes the sth stan-
dard unit basis vector in Rk11 , one has that

j(x1s21) 4P x W(0) es21 .(7)

Moreover, by using such relation in (5) one obtains that

b ( j) 4W(0)21u s
0

1

P x dxvW(0) ej21 , j� ]1, R , k( ,(8)

that is, the coefficients defining each method in the fGAMs are the columns

entries of the matrix W(0)21gs
0

1

P x dxhW(0). In [1], by a long proof which we

shall omit here, it has been shown that

uW(0)21s
0

1

P x dxW(0)v
ir

4s
0

1 gx1r

i
hgk2 (x1r)

k2 i
h dx ,(9)

i , r40, R , k . Then, the following result holds true.

THEOREM 2.1. – For a fixed j , the entries of vector b ( j) , defining each
method in the fGAMs, are

(10) b ( j)
i 4s

0

1

gx1 j21

i
hgk2 (x1 j21)

k2 i
h dx , i40, R , k .

The methods obtained in correspondence of the choice j4k are the classical
Adams-Moulton methods. They are used as initial value problems, i.e., by im-
posing in the discrete problem all the k21 additional conditions at the initial
points. It is known that the only Adams-Moulton method having an unboun-
ded absolute stability region is the trapezoidal rule, which corresponds to the
case k41. For kD1, the stability polynomial

p (k) (z , q) 4z k21 (z21)2q !
i40

k

b i
(k) z i ,(11)

obtained applying the formula to the test equation y 84ly , Re lE0, and po-
sing q4hl , has roots inside the unit circle only if h is small enough. Such se-
vere requirement on the location of the roots can be weakened by considering
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the BVMs approach [6]. In fact, when using formula (1) associated with j initial
conditions and k2 j final ones on the test equation, if the roots of the characte-
ristic polynomial

p ( j) (z , q) 4z j21 (z21)2hl !
i40

k

b i
( j) z i

fr ( j) (z)2qs ( j) (z)(12)

are such that

Nz1NGNz2NGRGNzj21 NENzjNENzj11NGRGNzkN(13)

Nzj21 NE 1 ENzj11N ,

for n and N2n large, the solution yn behaves as

yn Bgzj
n ,(14)

where g only depends on the initial conditions. Moreover, when h is suitably
small, the generating root zj will be the approximation to a certain order p of
e q , i.e.,

zj 4e q 1O(h p11 ) .(15)

This leads to generalize the classic concepts of 0-stability, convergence and A-
stability. We consider here a short overview about such generalizations ap-
plied to the methods in the fGAMs. Before that, we need to introduce the follo-
wing definitions generalizing the classical ones of Schur and Von Neumann
polynomials.

DEFINITION 2.1. – A polynomial p(z) of degree k is an

– Sj , k2 j-polynomial if its roots are such that

Nz1NGRGNzjNE1 ENzj11NGRGNzkN ;

– Nj , k2 j-polynomial if

Nz1NGRGNzjNG1 ENzj11NGRGNzkN ,

being simple the roots of unit modulus.

DEFINITION 2.2. – For a fixed j , a BVM in the fGAMs is 0j , k2 j-stable if
r ( j) (z) is an Nj , k2 j-polynomial.

Since r ( j) (z) 4z j21 (z21) (see (12)), all the methods in such family are
0j , k2 j-stable by construction. Moreover, by ignoring the effects of round-off
errors, it can be shown that they are also convergent [6].
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DEFINITION 2.3. – The region Dj , k2 j of the complex plane defined by

Dj , k2 j 4 ]q�C : p ( j) (z , q) is an Sj , k2 j -polynomial(

is called the region of ( j , k2 j)-absolute stability.

DEFINITION 2.4. – For a fixed j , a BVM in the fGAMs is said to be Aj , k2 j-
stable if C2’ Dj , k2 j .

The boundary locus, defined by

G ( j) 4 ]q�C : q4q ( j) (e iu ), 0 GuE2p( ,(16)

where (see (12))

q ( j) (e iu ) 4
r ( j) (e iu )

s ( j) (e iu )
,

assumes then special importance in discussing the stability of the methods. In
fact, when this set is a regular Jordan curve, it coincides with the boundary of
the ( j , k2 j)-absolute stability region of the method. In general, it is difficult
to recognize when this happens. Nevertheless, it holds true if

Re(q ( j) (e iu ) ) 4
c(12cos u)m

f ( j) (u)
,(17)

Im(q ( j) (e iu ) ) 4
sin u f (u)

f ( j) (u)
, u� [0 , 2p)(18)

with cF0, m a positive integer, f (u) D0 and

f ( j) (u) 4Ns ( j) (e iu )N2

which decreases in (0 , p) and increases in (p , 2p) (for more details, see
[6]).

Numerical evidences suggest that the Aj , k2 j-stability is not satisfied for all
values of j� ]1, R , k(. However, it is known that by choosing in (1)

j4nf

.
`
/
`
´

k

2

k11

2

for even k

for odd k

,(19)

for all kF1 the obtained methods are An , k2n-stable. In particular, when k is
even these methods are the GAMs and, respectively, when k is odd they are
the so called ETRs [3]. Nevertheless, in the fGAMs we will show that there
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exists another class of methods, neglected so far, having good stability proper-
ties for fixed stepsize.

3. – Odd-GAMs.

The class of k-step methods in the fGAMs having kf2n21 and obtained
by choosing j4n21 in (1), is now considered. Such methods, that we shall call
Odd-GAMs (OGAMs), are defined by

yn1n21 2yn1n22 4h !
i40

k

b i
(n21) fn1 i .(20)

The coefficients ]b i
(n21) (, whose explicit form can be derived from (10), are

b i
(n21) 4s

0

1

gx1n22

i
hgk2 (x1n22)

k2 i
h dx , i40, 1 , R , k .

They make (20) of order k11. In Table 1, we report the coefficients of the
OGAMs for k43, 5 , 7 . For convenience, we list the normalized coefficients
b×i 4h k b i

(n21) , i40, R , k .
These methods are used with n21 initial conditions and n final ones, i.e., as

BVMs with (n21, n)-boundary conditions. We skip here and in the following
the problem related to the choice of the additional conditions, already discus-
sed in [6].

By direct calculation we have verified, up to order 10 , that the points on the
boundary locus of OGAMs satisfy (17)-(18). In Table 2, the corresponding pa-
rameters c and m are reported.

TABLE 1. – Normalized coefficients of OGAMs.

k n21 h k b× 0 b× 1 b× 2 b× 3 b× 4 b× 5 b× 6 b× 7

3
5
7

1
2
3

24
1440

120960

9
227
351

19
637

24183

25
1022
57627

1
2258
81693

77
220227

211
7227 21719 191

TABLE 2. – Parameters c and m of formula (17) for OGAMs of order 4,6,8,10.

k

m

c

3

3
1

6

5

4
11

180

7

5
191

7560

9

6
2497

226800
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EXAMPLE 3.1. – For k43, one obtains the following analytic expression of
the boundary locus associated to the corresponding OGAM,

Re(q (1) (e iu ) ) 4

1

6
(12cos u)3

f (1) (u)
,

Im(q (1) (e iu ) ) 4

1

6
sin u(823 cos u1cos2 u)

f (1) (u)
,

where f (1) (u) 4
1

72
(65111 cos u213 cos2 u19 cos3 u).

In Figure 1 the boundary loci of OGAMs are shown for k43, 5 , R , 29 .
The stability regions are the unbounded sets delimited by the corresponding
curves. It is evident that C2 is contained in the (n21, n)-absolute stability re-
gion of each method. Therefore, all these formulae are An21, n-stable.

Fig. 1. – Boundary loci of the OGAMs of order k11, with k43, 5 , R , 29.
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4. – Numerical examples.

This section deals with numerical examples of two types: those which con-
firm the properties of OGAMs previously derived and those which give a first
comparison of their performances with other existing methods.

In order to verify the order of convergence for the OGAMs, we approxima-
te the solutions of the following linear stiff problem

y84u221

19

40

19

221

240

220

20

240

v y , y(0) 4u 1

0

21

v(21)

by using the OGAMs with k43, 5 , 7 , 9 steps over the time interval [0 , 1 ]. In
Table 3 the measured maximum absolute errors, for the specified constant
stepsize h , and the estimated rate of convergence are reported. In all the ca-
ses, as the stepsize is decreased, the observed convergence rate is near the
expected one, thus confirming the predicted order k11 for each formula.

We now compare the performances of OGAMs with those of GBDF (see [2]
and [6]) and some implicit Runge-Kutta methods, respectively, when they are
applied to the following stiff problem:

y84g22

378

1

2379
h y , y(0) 4g23

2
h .(22)

First of all, we integrate (22) by using the OGAM, GBDF, Lobatto IIIA and
Lobatto IIIC methods of order four, with constant stepsize h . In Figure 2 the
relative error, evaluated as

max
1 G iGN

Vy(ti )2yi VQ

11Vy(ti )VQ

,(23)

is plotted in [0, 0.003] where the solution has its greatest variation. As one can
see, OGAM works better than GBDF and Lobatto IIIC and worse than Lobat-
to IIIA.

Such behavior can be partially explained by looking at the principal part of

TABLE 3. – Results for OGAMs of order 4, 6, 8, 10 on problem (21).

h k 4 3 k 4 5 k 4 7 k 4 9

error rate error rate error rate error rate

2e-2 9.544e-03 — 4.014e-03 — 1.515e-03 — 3.188e-04 —
1e-2 8.070e-04 3.56 1.031e-04 5.28 7.952e-06 7.57 2.349e-06 7.08
5e-3 6.926e-05 3.54 8.751e-07 6.88 4.969e-08 7.32 2.693e-09 9.77

2.5e-3 5.004e-06 3.79 1.640e-08 5.74 1.860e-10 8.06 1.244e-12 11.08
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Fig. 2. – Problem (22) (above) and Problem (24) (below) in the transient phase.

the truncation error

t n 4cp11 y (p11) (tn ) h p11 1O(h p12 ) ,

where p is the order of the method and cp11 a coefficient depending only on
the method. As an example, one can see in Table 4 that the error constant for
OGAM is smaller than that for GBDF.

Similar conclusions can be obtained by applying the same methods on the
following linear problem:

y84 AAA y , y(0) 4g1

1
h ,(24)

TABLE 4. – Error constants of OGAMs and GBDF.

p 4 6

method OGAM GBDF OGAM GBDF

cp11 2
19

5! 6

36

5! 6

271

7! 12
2

576

7! 12
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TABLE 5. – Results for the 3-step OGAM and the 3-stage Lobatto IIIA, IIIC methods on
problem (25).

h OGAM Lobatto IIIA Lobatto IIIC

error rate error rate error rate

1e-1 8.144e-12 — 9.575e-11 — 8.315e-10 —
5e-2 4.683e-13 4.12 2.391e-11 2.00 2.082e-10 2.00
25e-3 2.764e-14 4.08 5.946e-12 2.01 5.206e-11 2.00
125e-4 1.988e-15 3.79 1.457e-12 2.03 1.301e-11 2.00

where

AAA 4g 0

210001

1

210000
h ,

with eigenvalues l 1 B21, l 2 B2104 (see Figure 2 below).
Consider now the Prothero-Robinson problem [10]

y 84l(y2W(t) )1W
.
(t), y(t0 ) 4W(t0 ), Re lG0 ,(25)

with W(t) 4sin t , l42106 , t� [0 , 1 ].

Fig. 3. – Prothero-Robinson problem.
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We approximate such problem by using the 3-stage Lobatto IIIA, IIIC
methods and the 3-step OGAM, with constant stepsize h . Under the assum-
ption that simultaneously hK0 and lhKQ , we observe from Table 5 that the
order of convergence for the implicit Runge-Kutta methods (Lobatto IIIA and
Lobatto IIIC methods) is considerably smaller than the classical order. On the
contrary, it is evident that OGAM does not suffer of loss of accuracy. Moreo-
ver, from Figure 3 it turns out that, for a fixed cost, the relative error for
OGAM is several order of magnitude less than the other methods.

5. – Conclusions.

Because of their good stability properties, OGAMs appear to be attractive
for the numerical solution of stiff problems. The numerical examples confirm
their potentiality. Therefore, an extension of code GAM [8], based also on
OGAMs, could be considered.

Acknowledgements. The author wishes to thank Donato Trigiante for his
helpful comments and constructive criticism during the preparation of this
paper.
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