bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Garello, Gianluca and Morando, Alessandro:
$L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications
Bollettino dell'Unione Matematica Italiana Serie 8 8-B (2005), fasc. n.2, p. 461-503, Unione Matematica Italiana (english)
pdf (464 Kb), djvu (561 Kb). | MR2149396 | Zbl 1178.35395

Sunto

Utilizzando una formulazione generalizzata della caratterizzazione per corone diadiche degli spazi di Sobolev, nel presente lavoro si dimostra la continuità $L^{p}$ per operatori pseudodifferenziali il cui simbolo a(x,ξ) non è infinitamente differenziabile rispetto alla variabile x, mentre le sue derivate rispetto alla variabile ξ decadono con ordine ρ, con $0 < \rho \leq 1$. Viene poi provata una proprietà di algebra per una classe di spazi di Sobolev pesati, che ben si applica allo studio della regolarità delle soluzioni di equazioni semi lineari multi-quasi-ellittiche.
Referenze Bibliografiche
[1] M. BEALS - M. C. REEDS , Microlocal regularity theorems for non smooth pseudodifferential operators and applications to non linear problems, Trans. Am. Math. Soc., 285 (1984), 159-184. | MR 748836 | Zbl 0562.35093
[2] P. BOGGIATTO - E. BUZANO - L. RODINO , Global Hypoellipticity and Spectral Theory, Mathematical Research, Vol. 92, Akademie Verlag, Berlin, New York, 1996. | MR 1435282 | Zbl 0878.35001
[3] J. M. BONY , Calcul simbolique et propagation des singularités pour les équations aux dérivées partielles non lineaires, Ann. Sc. Ec. Norm. Sup., 14 (1981), 161-205. | fulltext mini-dml | MR 631751 | Zbl 0495.35024
[4] J. M. BONY - J. Y. CHEMIN , Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France, 122 (1994), 77-118. | fulltext mini-dml | MR 1259109 | Zbl 0798.35172
[5] A. P. CALDERÓN , Intermediate spaces and interpolation, the complex method, Studia Math., 24 (1964), 113-190. | fulltext mini-dml | MR 167830 | Zbl 0204.13703
[6] R. COIFMAN - Y. MEYER , Au delà des opérateurs pseudo-differentiels, Astérisque 57, Soc. Math. France, 1978. | MR 518170 | Zbl 0483.35082
[7] Y. V. EGOROV - B. W. SCHULZE , Pseudo-differential operators, singularities, applications, Operator Theory: Advances and Applications, 93, Birkhäuser Verlag, Basel, 1997. | MR 1443430 | Zbl 0877.35141
[8] C. FEFFERMAN , $L^p$ bounds for pseudodifferential operators, Israel J. Math., 14 (1973), 413-417. | MR 336453 | Zbl 0259.47045
[9] G. GARELLO , Generalized Sobolev algebras and regularity for solutions of multiquasi-elliptic semi linear equations, Comm. in Appl. Analysis, 3 (4) (1999), 563-574. | MR 1706710 | Zbl 0933.35204
[10] G. GARELLO , Pseudodifferential operators with symbols in weighted Sobolev spaces and regularity for non linear partial differential equations, Math. Nachr., 239-240 (2001), 62-79. | MR 1905664 | Zbl 1027.35170
[11] G. GARELLO - A. MORANDO , $L^p$-bounded pseudodifferential operators and regularity for multi-quasi-elliptic equations, to appear in Integr. equ. oper. theory. | Zbl 1082.35175
[12] S. GINDIKIN - L. R. VOLEVICH , The method of Newton’s Polyhedron in the theory of partial differential equations, Coll. Mathematics and its Applications, Kluwer Academic Publishers, 1992. | MR 1256484 | Zbl 0779.35001
[13] B. HELFFER , Théorie spectrale pour des opérateurs globalement elliptiques, Soc. Math. de France, Astérisque, 1984. | MR 743094 | Zbl 0541.35002
[14] L. HÖRMANDER , The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math., 32 (3) (1979), 359-443. | MR 517939 | Zbl 0388.47032
[15] L. HÖRMANDER , The analysis of linear partial differential operators II. Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften, vol. 257, Springer-Verlag, Berlin, 1983. | MR 705278 | Zbl 0521.35002
[16] P. I. LIZORKIN , $(L^p, L^q )$-multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR, 152 (1963), 808-811. | MR 154057 | Zbl 0156.12902
[17] J. MARSCHALL , Pseudodifferential operators with non regular symbols of the class $S^m_{\rho,\delta}$, Comm. in Part. Diff. Eq., 12 (8) (1987), 921-965. | MR 891745 | Zbl 0621.47048
[18] J. MARSCHALL , Pseudo-differential operators with coefficients in Sobolev spaces, Trans. Amer. Math. Soc., 307 (1) (1988), 335-361. | Zbl 0679.35088
[19] M. A. SHUBIN , Pseudodifferential operators and spectral theory, Springer-Verlag, Berlin, 1987. | MR 883081 | Zbl 0616.47040
[20] E. M. STEIN , Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J. 1970. | MR 290095 | Zbl 0207.13501
[21] M. E. TAYLOR , Pseudodifferential Operators, Princeton Univ. Press 1981. | MR 618463 | Zbl 0453.47026
[22] M. E. TAYLOR , Pseudodifferential operators and nonlinear PDE, Birkhäuser, Basel-Boston-Berlin, 1991. | MR 1121019 | Zbl 0746.35062
[23] H. TRIEBEL , Interpolation theory, function spaces, differential operators, VEB, Berlin, 1977. | MR 503903 | Zbl 0387.46033
[24] H. TRIEBEL , Theory of Function Spaces, Birkhäuser Verlag, Basel, Boston, Stuttgart, 1983. | MR 781540 | Zbl 0763.46025
[25] H. TRIEBEL , General Function Spaces, I. Decomposition method, Math. Nachr., 79 (1977), 167-179. | MR 628009 | Zbl 0374.46026
[26] H. TRIEBEL , General Function Spaces, II. Inequalities of Plancherel-Pólya- Nikol'skij type. $L_p$-spaces of analytic functions; $0 < p \leq \infty$, J. Approximation Theory, 19 (1977), 154-175. | MR 628147 | Zbl 0344.46062
[27] H. TRIEBEL , General Function Spaces, III. Spaces $B_{p, q}^g(x)$ and $F_{p, q}^g(x)$, $1 < p < \infty$: basic properties, Anal. Math., 3 (3) (1977), 221-249. | MR 628468 | Zbl 0374.46027
[28] H. TRIEBEL , General Function Spaces, IV. Spaces $B_{p, q}^g(x)$ and $F_{p, q}^g(x)$, $1 < p < \infty$: special properties, Anal. Math., 3 (4) (1977), 299-315. | MR 628469 | Zbl 0374.46028
[29] H. TRIEBEL , General Function Spaces, V. The spaces $B_{p, q}^g(x)$ and $F_{p, q}^g(x)$ the case $0 < p < \infty$, Math. Nachr., 87 (1979), 129-152. | MR 536420 | Zbl 0414.46025
[30] M. W. WONG , An introduction to pseudo-differential operators, 2nd ed., World Scientific Publishing Co., Inc., River Edge, NJ, 1999. | MR 1698573 | Zbl 0753.35134

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali